Source code for opendrift.readers.reader_timeseries

# This file is part of OpenDrift.
#
# OpenDrift is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 2
#
# OpenDrift is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with OpenDrift.  If not, see <https://www.gnu.org/licenses/>.
#
# Copyright 2020, Knut-Frode Dagestad, MET Norway

from opendrift.readers.basereader import BaseReader, ContinuousReader
import numpy as np

[docs] class Reader(BaseReader, ContinuousReader): '''Reader providing the nearest value in time from a given time series.''' def __init__(self, parameter_value_map): '''init with a map {'time':, time array, 'variable_name': value, ...} If there is the key lon or lat in the map, it will be stored as self.lon and self.lat but not as a timeserie. ''' self.times = parameter_value_map['time'] if type(self.times) is not list: raise ValueError('time must be a list of datetime objects') del parameter_value_map['time'] for key, var in parameter_value_map.items(): if key == 'lon': self.lon=var continue if key == 'lat': self.lat=var continue parameter_value_map[key] = np.atleast_1d(var) if len(parameter_value_map[key]) != len(self.times): raise ValueError('All variables must have same length as time array') self._parameter_value_map = parameter_value_map self.variables = list(parameter_value_map.keys()) self.proj4 = '+proj=latlong' self.xmin = -180 self.xmax = 180 self.ymin = -90 self.ymax = 90 self.start_time = self.times[0] self.end_time = self.times[-1] #self.end_time = None self.time_step = self.times[1] - self.times[0] self.name = 'reader_timeseries' # Run constructor of parent Reader class super(Reader, self).__init__()
[docs] def get_variables(self, requestedVariables, time=None, x=None, y=None, z=None): nearestTime, dummy1, dummy2, indxTime, dummy3, dummy4 = \ self.nearest_time(time) variables = {'time': time, 'x': x, 'y': y, 'z': z} #variables.update(self._parameter_value_map) for var in requestedVariables: variables[var] = self._parameter_value_map[var][indxTime]*np.ones(x.shape) return variables