Point Cloud Library (PCL)  1.11.1-dev
range_image.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2010-2012, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  */
38 
39 #pragma once
40 
41 #include <pcl/range_image/range_image.h>
42 
43 #include <pcl/pcl_macros.h>
44 #include <pcl/common/distances.h>
45 #include <pcl/common/point_tests.h> // for pcl::isFinite
46 #include <pcl/common/vector_average.h> // for VectorAverage3f
47 
48 namespace pcl
49 {
50 
51 /////////////////////////////////////////////////////////////////////////
52 inline float
54 {
55  return (asin_lookup_table[
56  static_cast<int> (
57  static_cast<float> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1) / 2.0f) * value)) +
58  static_cast<float> (lookup_table_size-1) / 2.0f)]);
59 }
60 
61 /////////////////////////////////////////////////////////////////////////
62 inline float
63 RangeImage::atan2LookUp (float y, float x)
64 {
65  if (x==0 && y==0)
66  return 0;
67  float ret;
68  if (std::abs (x) < std::abs (y))
69  {
70  ret = atan_lookup_table[
71  static_cast<int> (
72  static_cast<float> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1) / 2.0f) * (x / y))) +
73  static_cast<float> (lookup_table_size-1) / 2.0f)];
74  ret = static_cast<float> (x*y > 0 ? M_PI/2-ret : -M_PI/2-ret);
75  }
76  else
77  ret = atan_lookup_table[
78  static_cast<int> (
79  static_cast<float> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1) / 2.0f) * (y / x))) +
80  static_cast<float> (lookup_table_size-1)/2.0f)];
81  if (x < 0)
82  ret = static_cast<float> (y < 0 ? ret-M_PI : ret+M_PI);
83 
84  return (ret);
85 }
86 
87 /////////////////////////////////////////////////////////////////////////
88 inline float
89 RangeImage::cosLookUp (float value)
90 {
91  int cell_idx = static_cast<int> (pcl_lrintf ( (static_cast<float> (lookup_table_size-1)) * std::abs (value) / (2.0f * static_cast<float> (M_PI))));
92  return (cos_lookup_table[cell_idx]);
93 }
94 
95 /////////////////////////////////////////////////////////////////////////
96 template <typename PointCloudType> void
97 RangeImage::createFromPointCloud (const PointCloudType& point_cloud, float angular_resolution,
98  float max_angle_width, float max_angle_height,
99  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
100  float noise_level, float min_range, int border_size)
101 {
102  createFromPointCloud (point_cloud, angular_resolution, angular_resolution, max_angle_width, max_angle_height,
103  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
104 }
105 
106 /////////////////////////////////////////////////////////////////////////
107 template <typename PointCloudType> void
108 RangeImage::createFromPointCloud (const PointCloudType& point_cloud,
109  float angular_resolution_x, float angular_resolution_y,
110  float max_angle_width, float max_angle_height,
111  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
112  float noise_level, float min_range, int border_size)
113 {
114  setAngularResolution (angular_resolution_x, angular_resolution_y);
115 
116  width = static_cast<std::uint32_t> (pcl_lrint (std::floor (max_angle_width*angular_resolution_x_reciprocal_)));
117  height = static_cast<std::uint32_t> (pcl_lrint (std::floor (max_angle_height*angular_resolution_y_reciprocal_)));
118 
119  int full_width = static_cast<int> (pcl_lrint (std::floor (pcl::deg2rad (360.0f)*angular_resolution_x_reciprocal_))),
120  full_height = static_cast<int> (pcl_lrint (std::floor (pcl::deg2rad (180.0f)*angular_resolution_y_reciprocal_)));
121  image_offset_x_ = (full_width -static_cast<int> (width) )/2;
122  image_offset_y_ = (full_height-static_cast<int> (height))/2;
123  is_dense = false;
124 
126  to_world_system_ = sensor_pose * to_world_system_;
127 
128  to_range_image_system_ = to_world_system_.inverse (Eigen::Isometry);
129  //std::cout << "to_world_system_ is\n"<<to_world_system_<<"\nand to_range_image_system_ is\n"<<to_range_image_system_<<"\n\n";
130 
131  unsigned int size = width*height;
132  points.clear ();
133  points.resize (size, unobserved_point);
134 
135  int top=height, right=-1, bottom=-1, left=width;
136  doZBuffer (point_cloud, noise_level, min_range, top, right, bottom, left);
137 
138  cropImage (border_size, top, right, bottom, left);
139 
141 }
142 
143 /////////////////////////////////////////////////////////////////////////
144 template <typename PointCloudType> void
145 RangeImage::createFromPointCloudWithKnownSize (const PointCloudType& point_cloud, float angular_resolution,
146  const Eigen::Vector3f& point_cloud_center, float point_cloud_radius,
147  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
148  float noise_level, float min_range, int border_size)
149 {
150  createFromPointCloudWithKnownSize (point_cloud, angular_resolution, angular_resolution, point_cloud_center, point_cloud_radius,
151  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
152 }
153 
154 /////////////////////////////////////////////////////////////////////////
155 template <typename PointCloudType> void
156 RangeImage::createFromPointCloudWithKnownSize (const PointCloudType& point_cloud,
157  float angular_resolution_x, float angular_resolution_y,
158  const Eigen::Vector3f& point_cloud_center, float point_cloud_radius,
159  const Eigen::Affine3f& sensor_pose, RangeImage::CoordinateFrame coordinate_frame,
160  float noise_level, float min_range, int border_size)
161 {
162  //MEASURE_FUNCTION_TIME;
163 
164  //std::cout << "Starting to create range image from "<<point_cloud.size ()<<" points.\n";
165 
166  // If the sensor pose is inside of the sphere we have to calculate the image the normal way
167  if ((point_cloud_center-sensor_pose.translation()).norm() <= point_cloud_radius) {
168  createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y,
169  pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
170  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
171  return;
172  }
173 
174  setAngularResolution (angular_resolution_x, angular_resolution_y);
175 
177  to_world_system_ = sensor_pose * to_world_system_;
178  to_range_image_system_ = to_world_system_.inverse (Eigen::Isometry);
179 
180  float max_angle_size = getMaxAngleSize (sensor_pose, point_cloud_center, point_cloud_radius);
181  int pixel_radius_x = pcl_lrint (std::ceil (0.5f*max_angle_size*angular_resolution_x_reciprocal_)),
182  pixel_radius_y = pcl_lrint (std::ceil (0.5f*max_angle_size*angular_resolution_y_reciprocal_));
183  width = 2*pixel_radius_x;
184  height = 2*pixel_radius_y;
185  is_dense = false;
186 
187  image_offset_x_ = image_offset_y_ = 0; // temporary values for getImagePoint
188  int center_pixel_x, center_pixel_y;
189  getImagePoint (point_cloud_center, center_pixel_x, center_pixel_y);
190  image_offset_x_ = (std::max) (0, center_pixel_x-pixel_radius_x);
191  image_offset_y_ = (std::max) (0, center_pixel_y-pixel_radius_y);
192 
193  points.clear ();
195 
196  int top=height, right=-1, bottom=-1, left=width;
197  doZBuffer (point_cloud, noise_level, min_range, top, right, bottom, left);
198 
199  cropImage (border_size, top, right, bottom, left);
200 
202 }
203 
204 /////////////////////////////////////////////////////////////////////////
205 template <typename PointCloudTypeWithViewpoints> void
206 RangeImage::createFromPointCloudWithViewpoints (const PointCloudTypeWithViewpoints& point_cloud,
207  float angular_resolution,
208  float max_angle_width, float max_angle_height,
209  RangeImage::CoordinateFrame coordinate_frame,
210  float noise_level, float min_range, int border_size)
211 {
212  createFromPointCloudWithViewpoints (point_cloud, angular_resolution, angular_resolution,
213  max_angle_width, max_angle_height, coordinate_frame,
214  noise_level, min_range, border_size);
215 }
216 
217 /////////////////////////////////////////////////////////////////////////
218 template <typename PointCloudTypeWithViewpoints> void
219 RangeImage::createFromPointCloudWithViewpoints (const PointCloudTypeWithViewpoints& point_cloud,
220  float angular_resolution_x, float angular_resolution_y,
221  float max_angle_width, float max_angle_height,
222  RangeImage::CoordinateFrame coordinate_frame,
223  float noise_level, float min_range, int border_size)
224 {
225  Eigen::Vector3f average_viewpoint = getAverageViewPoint (point_cloud);
226  Eigen::Affine3f sensor_pose = static_cast<Eigen::Affine3f> (Eigen::Translation3f (average_viewpoint));
227  createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y, max_angle_width, max_angle_height,
228  sensor_pose, coordinate_frame, noise_level, min_range, border_size);
229 }
230 
231 /////////////////////////////////////////////////////////////////////////
232 template <typename PointCloudType> void
233 RangeImage::doZBuffer (const PointCloudType& point_cloud, float noise_level, float min_range, int& top, int& right, int& bottom, int& left)
234 {
235  using PointType2 = typename PointCloudType::PointType;
236  const typename pcl::PointCloud<PointType2>::VectorType &points2 = point_cloud.points;
237 
238  unsigned int size = width*height;
239  int* counters = new int[size];
240  ERASE_ARRAY (counters, size);
241 
242  top=height; right=-1; bottom=-1; left=width;
243 
244  float x_real, y_real, range_of_current_point;
245  int x, y;
246  for (const auto& point: points2)
247  {
248  if (!isFinite (point)) // Check for NAN etc
249  continue;
250  Vector3fMapConst current_point = point.getVector3fMap ();
251 
252  this->getImagePoint (current_point, x_real, y_real, range_of_current_point);
253  this->real2DToInt2D (x_real, y_real, x, y);
254 
255  if (range_of_current_point < min_range|| !isInImage (x, y))
256  continue;
257  //std::cout << " ("<<current_point[0]<<", "<<current_point[1]<<", "<<current_point[2]<<") falls into pixel "<<x<<","<<y<<".\n";
258 
259  // Do some minor interpolation by checking the three closest neighbors to the point, that are not filled yet.
260  int floor_x = pcl_lrint (std::floor (x_real)), floor_y = pcl_lrint (std::floor (y_real)),
261  ceil_x = pcl_lrint (std::ceil (x_real)), ceil_y = pcl_lrint (std::ceil (y_real));
262 
263  int neighbor_x[4], neighbor_y[4];
264  neighbor_x[0]=floor_x; neighbor_y[0]=floor_y;
265  neighbor_x[1]=floor_x; neighbor_y[1]=ceil_y;
266  neighbor_x[2]=ceil_x; neighbor_y[2]=floor_y;
267  neighbor_x[3]=ceil_x; neighbor_y[3]=ceil_y;
268  //std::cout << x_real<<","<<y_real<<": ";
269 
270  for (int i=0; i<4; ++i)
271  {
272  int n_x=neighbor_x[i], n_y=neighbor_y[i];
273  //std::cout << n_x<<","<<n_y<<" ";
274  if (n_x==x && n_y==y)
275  continue;
276  if (isInImage (n_x, n_y))
277  {
278  int neighbor_array_pos = n_y*width + n_x;
279  if (counters[neighbor_array_pos]==0)
280  {
281  float& neighbor_range = points[neighbor_array_pos].range;
282  neighbor_range = (std::isinf (neighbor_range) ? range_of_current_point : (std::min) (neighbor_range, range_of_current_point));
283  top= (std::min) (top, n_y); right= (std::max) (right, n_x); bottom= (std::max) (bottom, n_y); left= (std::min) (left, n_x);
284  }
285  }
286  }
287  //std::cout <<std::endl;
288 
289  // The point itself
290  int arrayPos = y*width + x;
291  float& range_at_image_point = points[arrayPos].range;
292  int& counter = counters[arrayPos];
293  bool addCurrentPoint=false, replace_with_current_point=false;
294 
295  if (counter==0)
296  {
297  replace_with_current_point = true;
298  }
299  else
300  {
301  if (range_of_current_point < range_at_image_point-noise_level)
302  {
303  replace_with_current_point = true;
304  }
305  else if (std::fabs (range_of_current_point-range_at_image_point)<=noise_level)
306  {
307  addCurrentPoint = true;
308  }
309  }
310 
311  if (replace_with_current_point)
312  {
313  counter = 1;
314  range_at_image_point = range_of_current_point;
315  top= (std::min) (top, y); right= (std::max) (right, x); bottom= (std::max) (bottom, y); left= (std::min) (left, x);
316  //std::cout << "Adding point "<<x<<","<<y<<"\n";
317  }
318  else if (addCurrentPoint)
319  {
320  ++counter;
321  range_at_image_point += (range_of_current_point-range_at_image_point)/counter;
322  }
323  }
324 
325  delete[] counters;
326 }
327 
328 /////////////////////////////////////////////////////////////////////////
329 void
330 RangeImage::getImagePoint (float x, float y, float z, float& image_x, float& image_y, float& range) const
331 {
332  Eigen::Vector3f point (x, y, z);
333  getImagePoint (point, image_x, image_y, range);
334 }
335 
336 /////////////////////////////////////////////////////////////////////////
337 void
338 RangeImage::getImagePoint (float x, float y, float z, float& image_x, float& image_y) const
339 {
340  float range;
341  getImagePoint (x, y, z, image_x, image_y, range);
342 }
343 
344 /////////////////////////////////////////////////////////////////////////
345 void
346 RangeImage::getImagePoint (float x, float y, float z, int& image_x, int& image_y) const
347 {
348  float image_x_float, image_y_float;
349  getImagePoint (x, y, z, image_x_float, image_y_float);
350  real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
351 }
352 
353 /////////////////////////////////////////////////////////////////////////
354 void
355 RangeImage::getImagePoint (const Eigen::Vector3f& point, float& image_x, float& image_y, float& range) const
356 {
357  Eigen::Vector3f transformedPoint = to_range_image_system_ * point;
358  range = transformedPoint.norm ();
359  float angle_x = atan2LookUp (transformedPoint[0], transformedPoint[2]),
360  angle_y = asinLookUp (transformedPoint[1]/range);
361  getImagePointFromAngles (angle_x, angle_y, image_x, image_y);
362  //std::cout << " ("<<point[0]<<","<<point[1]<<","<<point[2]<<")"
363  //<< " => ("<<transformedPoint[0]<<","<<transformedPoint[1]<<","<<transformedPoint[2]<<")"
364  //<< " => "<<angle_x<<","<<angle_y<<" => "<<image_x<<","<<image_y<<"\n";
365 }
366 
367 /////////////////////////////////////////////////////////////////////////
368 void
369 RangeImage::getImagePoint (const Eigen::Vector3f& point, int& image_x, int& image_y, float& range) const {
370  float image_x_float, image_y_float;
371  getImagePoint (point, image_x_float, image_y_float, range);
372  real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
373 }
374 
375 /////////////////////////////////////////////////////////////////////////
376 void
377 RangeImage::getImagePoint (const Eigen::Vector3f& point, float& image_x, float& image_y) const
378 {
379  float range;
380  getImagePoint (point, image_x, image_y, range);
381 }
382 
383 /////////////////////////////////////////////////////////////////////////
384 void
385 RangeImage::getImagePoint (const Eigen::Vector3f& point, int& image_x, int& image_y) const
386 {
387  float image_x_float, image_y_float;
388  getImagePoint (point, image_x_float, image_y_float);
389  real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
390 }
391 
392 /////////////////////////////////////////////////////////////////////////
393 float
394 RangeImage::checkPoint (const Eigen::Vector3f& point, PointWithRange& point_in_image) const
395 {
396  int image_x, image_y;
397  float range;
398  getImagePoint (point, image_x, image_y, range);
399  if (!isInImage (image_x, image_y))
400  point_in_image = unobserved_point;
401  else
402  point_in_image = getPoint (image_x, image_y);
403  return range;
404 }
405 
406 /////////////////////////////////////////////////////////////////////////
407 float
408 RangeImage::getRangeDifference (const Eigen::Vector3f& point) const
409 {
410  int image_x, image_y;
411  float range;
412  getImagePoint (point, image_x, image_y, range);
413  if (!isInImage (image_x, image_y))
414  return -std::numeric_limits<float>::infinity ();
415  float image_point_range = getPoint (image_x, image_y).range;
416  if (std::isinf (image_point_range))
417  {
418  if (image_point_range > 0.0f)
419  return std::numeric_limits<float>::infinity ();
420  return -std::numeric_limits<float>::infinity ();
421  }
422  return image_point_range - range;
423 }
424 
425 /////////////////////////////////////////////////////////////////////////
426 void
427 RangeImage::getImagePointFromAngles (float angle_x, float angle_y, float& image_x, float& image_y) const
428 {
429  image_x = (angle_x*cosLookUp (angle_y) + static_cast<float> (M_PI))*angular_resolution_x_reciprocal_ - static_cast<float> (image_offset_x_);
430  image_y = (angle_y + 0.5f*static_cast<float> (M_PI))*angular_resolution_y_reciprocal_ - static_cast<float> (image_offset_y_);
431 }
432 
433 /////////////////////////////////////////////////////////////////////////
434 void
435 RangeImage::real2DToInt2D (float x, float y, int& xInt, int& yInt) const
436 {
437  xInt = static_cast<int> (pcl_lrintf (x));
438  yInt = static_cast<int> (pcl_lrintf (y));
439 }
440 
441 /////////////////////////////////////////////////////////////////////////
442 bool
443 RangeImage::isInImage (int x, int y) const
444 {
445  return (x >= 0 && x < static_cast<int> (width) && y >= 0 && y < static_cast<int> (height));
446 }
447 
448 /////////////////////////////////////////////////////////////////////////
449 bool
450 RangeImage::isValid (int x, int y) const
451 {
452  return isInImage (x,y) && std::isfinite (getPoint (x,y).range);
453 }
454 
455 /////////////////////////////////////////////////////////////////////////
456 bool
457 RangeImage::isValid (int index) const
458 {
459  return std::isfinite (getPoint (index).range);
460 }
461 
462 /////////////////////////////////////////////////////////////////////////
463 bool
464 RangeImage::isObserved (int x, int y) const
465 {
466  return !(!isInImage (x,y) || (std::isinf (getPoint (x,y).range) && getPoint (x,y).range < 0.0f));
467 }
468 
469 /////////////////////////////////////////////////////////////////////////
470 bool
471 RangeImage::isMaxRange (int x, int y) const
472 {
473  float range = getPoint (x,y).range;
474  return std::isinf (range) && range>0.0f;
475 }
476 
477 /////////////////////////////////////////////////////////////////////////
478 const PointWithRange&
479 RangeImage::getPoint (int image_x, int image_y) const
480 {
481  if (!isInImage (image_x, image_y))
482  return unobserved_point;
483  return points[image_y*width + image_x];
484 }
485 
486 /////////////////////////////////////////////////////////////////////////
487 const PointWithRange&
488 RangeImage::getPointNoCheck (int image_x, int image_y) const
489 {
490  return points[image_y*width + image_x];
491 }
492 
493 /////////////////////////////////////////////////////////////////////////
495 RangeImage::getPointNoCheck (int image_x, int image_y)
496 {
497  return points[image_y*width + image_x];
498 }
499 
500 /////////////////////////////////////////////////////////////////////////
502 RangeImage::getPoint (int image_x, int image_y)
503 {
504  return points[image_y*width + image_x];
505 }
506 
507 
508 /////////////////////////////////////////////////////////////////////////
509 const PointWithRange&
510 RangeImage::getPoint (int index) const
511 {
512  return points[index];
513 }
514 
515 /////////////////////////////////////////////////////////////////////////
516 const PointWithRange&
517 RangeImage::getPoint (float image_x, float image_y) const
518 {
519  int x, y;
520  real2DToInt2D (image_x, image_y, x, y);
521  return getPoint (x, y);
522 }
523 
524 /////////////////////////////////////////////////////////////////////////
526 RangeImage::getPoint (float image_x, float image_y)
527 {
528  int x, y;
529  real2DToInt2D (image_x, image_y, x, y);
530  return getPoint (x, y);
531 }
532 
533 /////////////////////////////////////////////////////////////////////////
534 void
535 RangeImage::getPoint (int image_x, int image_y, Eigen::Vector3f& point) const
536 {
537  //std::cout << getPoint (image_x, image_y)<< " - " << getPoint (image_x, image_y).getVector3fMap ()<<"\n";
538  point = getPoint (image_x, image_y).getVector3fMap ();
539 }
540 
541 /////////////////////////////////////////////////////////////////////////
542 void
543 RangeImage::getPoint (int index, Eigen::Vector3f& point) const
544 {
545  point = getPoint (index).getVector3fMap ();
546 }
547 
548 /////////////////////////////////////////////////////////////////////////
549 const Eigen::Map<const Eigen::Vector3f>
550 RangeImage::getEigenVector3f (int x, int y) const
551 {
552  return getPoint (x, y).getVector3fMap ();
553 }
554 
555 /////////////////////////////////////////////////////////////////////////
556 const Eigen::Map<const Eigen::Vector3f>
558 {
559  return getPoint (index).getVector3fMap ();
560 }
561 
562 /////////////////////////////////////////////////////////////////////////
563 void
564 RangeImage::calculate3DPoint (float image_x, float image_y, float range, Eigen::Vector3f& point) const
565 {
566  float angle_x, angle_y;
567  //std::cout << image_x<<","<<image_y<<","<<range;
568  getAnglesFromImagePoint (image_x, image_y, angle_x, angle_y);
569 
570  float cosY = std::cos (angle_y);
571  point = Eigen::Vector3f (range * sinf (angle_x) * cosY, range * sinf (angle_y), range * std::cos (angle_x)*cosY);
572  point = to_world_system_ * point;
573 }
574 
575 /////////////////////////////////////////////////////////////////////////
576 void
577 RangeImage::calculate3DPoint (float image_x, float image_y, Eigen::Vector3f& point) const
578 {
579  const PointWithRange& point_in_image = getPoint (image_x, image_y);
580  calculate3DPoint (image_x, image_y, point_in_image.range, point);
581 }
582 
583 /////////////////////////////////////////////////////////////////////////
584 void
585 RangeImage::calculate3DPoint (float image_x, float image_y, float range, PointWithRange& point) const {
586  point.range = range;
587  Eigen::Vector3f tmp_point;
588  calculate3DPoint (image_x, image_y, range, tmp_point);
589  point.x=tmp_point[0]; point.y=tmp_point[1]; point.z=tmp_point[2];
590 }
591 
592 /////////////////////////////////////////////////////////////////////////
593 void
594 RangeImage::calculate3DPoint (float image_x, float image_y, PointWithRange& point) const
595 {
596  const PointWithRange& point_in_image = getPoint (image_x, image_y);
597  calculate3DPoint (image_x, image_y, point_in_image.range, point);
598 }
599 
600 /////////////////////////////////////////////////////////////////////////
601 void
602 RangeImage::getAnglesFromImagePoint (float image_x, float image_y, float& angle_x, float& angle_y) const
603 {
604  angle_y = (image_y+static_cast<float> (image_offset_y_))*angular_resolution_y_ - 0.5f*static_cast<float> (M_PI);
605  float cos_angle_y = std::cos (angle_y);
606  angle_x = (cos_angle_y==0.0f ? 0.0f : ( (image_x+ static_cast<float> (image_offset_x_))*angular_resolution_x_ - static_cast<float> (M_PI))/cos_angle_y);
607 }
608 
609 /////////////////////////////////////////////////////////////////////////
610 float
611 RangeImage::getImpactAngle (int x1, int y1, int x2, int y2) const
612 {
613  if (!isInImage (x1, y1) || !isInImage (x2,y2))
614  return -std::numeric_limits<float>::infinity ();
615  return getImpactAngle (getPoint (x1,y1),getPoint (x2,y2));
616 }
617 
618 /////////////////////////////////////////////////////////////////////////
619 float
620 RangeImage::getImpactAngle (const PointWithRange& point1, const PointWithRange& point2) const {
621  if ( (std::isinf (point1.range)&&point1.range<0) || (std::isinf (point2.range)&&point2.range<0))
622  return -std::numeric_limits<float>::infinity ();
623 
624  float r1 = (std::min) (point1.range, point2.range),
625  r2 = (std::max) (point1.range, point2.range);
626  float impact_angle = static_cast<float> (0.5f * M_PI);
627 
628  if (std::isinf (r2))
629  {
630  if (r2 > 0.0f && !std::isinf (r1))
631  impact_angle = 0.0f;
632  }
633  else if (!std::isinf (r1))
634  {
635  float r1Sqr = r1*r1,
636  r2Sqr = r2*r2,
637  dSqr = squaredEuclideanDistance (point1, point2),
638  d = std::sqrt (dSqr);
639  float cos_impact_angle = (r2Sqr + dSqr - r1Sqr)/ (2.0f*r2*d);
640  cos_impact_angle = (std::max) (0.0f, (std::min) (1.0f, cos_impact_angle));
641  impact_angle = std::acos (cos_impact_angle); // Using the cosine rule
642  }
643 
644  if (point1.range > point2.range)
645  impact_angle = -impact_angle;
646 
647  return impact_angle;
648 }
649 
650 /////////////////////////////////////////////////////////////////////////
651 float
652 RangeImage::getAcutenessValue (const PointWithRange& point1, const PointWithRange& point2) const
653 {
654  float impact_angle = getImpactAngle (point1, point2);
655  if (std::isinf (impact_angle))
656  return -std::numeric_limits<float>::infinity ();
657  float ret = 1.0f - float (std::fabs (impact_angle)/ (0.5f*M_PI));
658  if (impact_angle < 0.0f)
659  ret = -ret;
660  //if (std::abs (ret)>1)
661  //std::cout << PVARAC (impact_angle)<<PVARN (ret);
662  return ret;
663 }
664 
665 /////////////////////////////////////////////////////////////////////////
666 float
667 RangeImage::getAcutenessValue (int x1, int y1, int x2, int y2) const
668 {
669  if (!isInImage (x1, y1) || !isInImage (x2,y2))
670  return -std::numeric_limits<float>::infinity ();
671  return getAcutenessValue (getPoint (x1,y1), getPoint (x2,y2));
672 }
673 
674 /////////////////////////////////////////////////////////////////////////
675 const Eigen::Vector3f
677 {
678  return Eigen::Vector3f (to_world_system_ (0,3), to_world_system_ (1,3), to_world_system_ (2,3));
679 }
680 
681 /////////////////////////////////////////////////////////////////////////
682 void
683 RangeImage::getSurfaceAngleChange (int x, int y, int radius, float& angle_change_x, float& angle_change_y) const
684 {
685  angle_change_x = angle_change_y = -std::numeric_limits<float>::infinity ();
686  if (!isValid (x,y))
687  return;
688  Eigen::Vector3f point;
689  getPoint (x, y, point);
690  Eigen::Affine3f transformation = getTransformationToViewerCoordinateFrame (point);
691 
692  if (isObserved (x-radius, y) && isObserved (x+radius, y))
693  {
694  Eigen::Vector3f transformed_left;
695  if (isMaxRange (x-radius, y))
696  transformed_left = Eigen::Vector3f (0.0f, 0.0f, -1.0f);
697  else
698  {
699  Eigen::Vector3f left;
700  getPoint (x-radius, y, left);
701  transformed_left = - (transformation * left);
702  //std::cout << PVARN (transformed_left[1]);
703  transformed_left[1] = 0.0f;
704  transformed_left.normalize ();
705  }
706 
707  Eigen::Vector3f transformed_right;
708  if (isMaxRange (x+radius, y))
709  transformed_right = Eigen::Vector3f (0.0f, 0.0f, 1.0f);
710  else
711  {
712  Eigen::Vector3f right;
713  getPoint (x+radius, y, right);
714  transformed_right = transformation * right;
715  //std::cout << PVARN (transformed_right[1]);
716  transformed_right[1] = 0.0f;
717  transformed_right.normalize ();
718  }
719  angle_change_x = transformed_left.dot (transformed_right);
720  angle_change_x = (std::max) (0.0f, (std::min) (1.0f, angle_change_x));
721  angle_change_x = std::acos (angle_change_x);
722  }
723 
724  if (isObserved (x, y-radius) && isObserved (x, y+radius))
725  {
726  Eigen::Vector3f transformed_top;
727  if (isMaxRange (x, y-radius))
728  transformed_top = Eigen::Vector3f (0.0f, 0.0f, -1.0f);
729  else
730  {
731  Eigen::Vector3f top;
732  getPoint (x, y-radius, top);
733  transformed_top = - (transformation * top);
734  //std::cout << PVARN (transformed_top[0]);
735  transformed_top[0] = 0.0f;
736  transformed_top.normalize ();
737  }
738 
739  Eigen::Vector3f transformed_bottom;
740  if (isMaxRange (x, y+radius))
741  transformed_bottom = Eigen::Vector3f (0.0f, 0.0f, 1.0f);
742  else
743  {
744  Eigen::Vector3f bottom;
745  getPoint (x, y+radius, bottom);
746  transformed_bottom = transformation * bottom;
747  //std::cout << PVARN (transformed_bottom[0]);
748  transformed_bottom[0] = 0.0f;
749  transformed_bottom.normalize ();
750  }
751  angle_change_y = transformed_top.dot (transformed_bottom);
752  angle_change_y = (std::max) (0.0f, (std::min) (1.0f, angle_change_y));
753  angle_change_y = std::acos (angle_change_y);
754  }
755 }
756 
757 
758 //inline float RangeImage::getSurfaceChange (const PointWithRange& point, const PointWithRange& neighbor1, const PointWithRange& neighbor2) const
759 //{
760  //if (!std::isfinite (point.range) || (!std::isfinite (neighbor1.range)&&neighbor1.range<0) || (!std::isfinite (neighbor2.range)&&neighbor2.range<0))
761  //return -std::numeric_limits<float>::infinity ();
762  //if (std::isinf (neighbor1.range))
763  //{
764  //if (std::isinf (neighbor2.range))
765  //return 0.0f;
766  //else
767  //return std::acos ( (Eigen::Vector3f (point.x, point.y, point.z)-getSensorPos ()).normalized ().dot ( (Eigen::Vector3f (neighbor2.x, neighbor2.y, neighbor2.z)-Eigen::Vector3f (point.x, point.y, point.z)).normalized ()));
768  //}
769  //if (std::isinf (neighbor2.range))
770  //return std::acos ( (Eigen::Vector3f (point.x, point.y, point.z)-getSensorPos ()).normalized ().dot ( (Eigen::Vector3f (neighbor1.x, neighbor1.y, neighbor1.z)-Eigen::Vector3f (point.x, point.y, point.z)).normalized ()));
771 
772  //float d1_squared = squaredEuclideanDistance (point, neighbor1),
773  //d1 = std::sqrt (d1_squared),
774  //d2_squared = squaredEuclideanDistance (point, neighbor2),
775  //d2 = std::sqrt (d2_squared),
776  //d3_squared = squaredEuclideanDistance (neighbor1, neighbor2);
777  //float cos_surface_change = (d1_squared + d2_squared - d3_squared)/ (2.0f*d1*d2),
778  //surface_change = std::acos (cos_surface_change);
779  //if (std::isnan (surface_change))
780  //surface_change = static_cast<float> (M_PI);
781  ////std::cout << PVARN (point)<<PVARN (neighbor1)<<PVARN (neighbor2)<<PVARN (cos_surface_change)<<PVARN (surface_change)<<PVARN (d1)<<PVARN (d2)<<PVARN (d1_squared)<<PVARN (d2_squared)<<PVARN (d3_squared);
782 
783  //return surface_change;
784 //}
785 
786 /////////////////////////////////////////////////////////////////////////
787 float
788 RangeImage::getMaxAngleSize (const Eigen::Affine3f& viewer_pose, const Eigen::Vector3f& center, float radius)
789 {
790  return 2.0f * asinf (radius/ (viewer_pose.translation ()-center).norm ());
791 }
792 
793 /////////////////////////////////////////////////////////////////////////
794 Eigen::Vector3f
796 {
797  return Eigen::Vector3f (point.x, point.y, point.z);
798 }
799 
800 /////////////////////////////////////////////////////////////////////////
801 void
802 RangeImage::get1dPointAverage (int x, int y, int delta_x, int delta_y, int no_of_points, PointWithRange& average_point) const
803 {
804  //std::cout << __PRETTY_FUNCTION__<<" called.\n";
805  //MEASURE_FUNCTION_TIME;
806  float weight_sum = 1.0f;
807  average_point = getPoint (x,y);
808  if (std::isinf (average_point.range))
809  {
810  if (average_point.range>0.0f) // The first point is max range -> return a max range point
811  return;
812  weight_sum = 0.0f;
813  average_point.x = average_point.y = average_point.z = average_point.range = 0.0f;
814  }
815 
816  int x2=x, y2=y;
817  Vector4fMap average_point_eigen = average_point.getVector4fMap ();
818  //std::cout << PVARN (no_of_points);
819  for (int step=1; step<no_of_points; ++step)
820  {
821  //std::cout << PVARC (step);
822  x2+=delta_x; y2+=delta_y;
823  if (!isValid (x2, y2))
824  continue;
825  const PointWithRange& p = getPointNoCheck (x2, y2);
826  average_point_eigen+=p.getVector4fMap (); average_point.range+=p.range;
827  weight_sum += 1.0f;
828  }
829  if (weight_sum<= 0.0f)
830  {
831  average_point = unobserved_point;
832  return;
833  }
834  float normalization_factor = 1.0f/weight_sum;
835  average_point_eigen *= normalization_factor;
836  average_point.range *= normalization_factor;
837  //std::cout << PVARN (average_point);
838 }
839 
840 /////////////////////////////////////////////////////////////////////////
841 float
842 RangeImage::getEuclideanDistanceSquared (int x1, int y1, int x2, int y2) const
843 {
844  if (!isObserved (x1,y1)||!isObserved (x2,y2))
845  return -std::numeric_limits<float>::infinity ();
846  const PointWithRange& point1 = getPoint (x1,y1),
847  & point2 = getPoint (x2,y2);
848  if (std::isinf (point1.range) && std::isinf (point2.range))
849  return 0.0f;
850  if (std::isinf (point1.range) || std::isinf (point2.range))
851  return std::numeric_limits<float>::infinity ();
852  return squaredEuclideanDistance (point1, point2);
853 }
854 
855 /////////////////////////////////////////////////////////////////////////
856 float
857 RangeImage::getAverageEuclideanDistance (int x, int y, int offset_x, int offset_y, int max_steps) const
858 {
859  float average_pixel_distance = 0.0f;
860  float weight=0.0f;
861  for (int i=0; i<max_steps; ++i)
862  {
863  int x1=x+i*offset_x, y1=y+i*offset_y;
864  int x2=x+ (i+1)*offset_x, y2=y+ (i+1)*offset_y;
865  float pixel_distance = getEuclideanDistanceSquared (x1,y1,x2,y2);
866  if (!std::isfinite (pixel_distance))
867  {
868  //std::cout << x<<","<<y<<"->"<<x2<<","<<y2<<": "<<pixel_distance<<"\n";
869  if (i==0)
870  return pixel_distance;
871  break;
872  }
873  //std::cout << x<<","<<y<<"->"<<x2<<","<<y2<<": "<<std::sqrt (pixel_distance)<<"m\n";
874  weight += 1.0f;
875  average_pixel_distance += std::sqrt (pixel_distance);
876  }
877  average_pixel_distance /= weight;
878  //std::cout << x<<","<<y<<","<<offset_x<<","<<offset_y<<" => "<<average_pixel_distance<<"\n";
879  return average_pixel_distance;
880 }
881 
882 /////////////////////////////////////////////////////////////////////////
883 float
884 RangeImage::getImpactAngleBasedOnLocalNormal (int x, int y, int radius) const
885 {
886  if (!isValid (x,y))
887  return -std::numeric_limits<float>::infinity ();
888  const PointWithRange& point = getPoint (x, y);
889  int no_of_nearest_neighbors = static_cast<int> (pow (static_cast<double> ( (radius + 1.0)), 2.0));
890  Eigen::Vector3f normal;
891  if (!getNormalForClosestNeighbors (x, y, radius, point, no_of_nearest_neighbors, normal, 1))
892  return -std::numeric_limits<float>::infinity ();
893  return deg2rad (90.0f) - std::acos (normal.dot ( (getSensorPos ()-getEigenVector3f (point)).normalized ()));
894 }
895 
896 
897 /////////////////////////////////////////////////////////////////////////
898 bool
899 RangeImage::getNormal (int x, int y, int radius, Eigen::Vector3f& normal, int step_size) const
900 {
901  VectorAverage3f vector_average;
902  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
903  {
904  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
905  {
906  if (!isInImage (x2, y2))
907  continue;
908  const PointWithRange& point = getPoint (x2, y2);
909  if (!std::isfinite (point.range))
910  continue;
911  vector_average.add (Eigen::Vector3f (point.x, point.y, point.z));
912  }
913  }
914  if (vector_average.getNoOfSamples () < 3)
915  return false;
916  Eigen::Vector3f eigen_values, eigen_vector2, eigen_vector3;
917  vector_average.doPCA (eigen_values, normal, eigen_vector2, eigen_vector3);
918  if (normal.dot ( (getSensorPos ()-vector_average.getMean ()).normalized ()) < 0.0f)
919  normal *= -1.0f;
920  return true;
921 }
922 
923 /////////////////////////////////////////////////////////////////////////
924 float
925 RangeImage::getNormalBasedAcutenessValue (int x, int y, int radius) const
926 {
927  float impact_angle = getImpactAngleBasedOnLocalNormal (x, y, radius);
928  if (std::isinf (impact_angle))
929  return -std::numeric_limits<float>::infinity ();
930  float ret = 1.0f - static_cast<float> ( (impact_angle / (0.5f * M_PI)));
931  //std::cout << PVARAC (impact_angle)<<PVARN (ret);
932  return ret;
933 }
934 
935 /////////////////////////////////////////////////////////////////////////
936 bool
937 RangeImage::getNormalForClosestNeighbors (int x, int y, int radius, const PointWithRange& point,
938  int no_of_nearest_neighbors, Eigen::Vector3f& normal, int step_size) const
939 {
940  return getNormalForClosestNeighbors (x, y, radius, Eigen::Vector3f (point.x, point.y, point.z), no_of_nearest_neighbors, normal, nullptr, step_size);
941 }
942 
943 /////////////////////////////////////////////////////////////////////////
944 bool
945 RangeImage::getNormalForClosestNeighbors (int x, int y, Eigen::Vector3f& normal, int radius) const
946 {
947  if (!isValid (x,y))
948  return false;
949  int no_of_nearest_neighbors = static_cast<int> (pow (static_cast<double> (radius + 1.0), 2.0));
950  return getNormalForClosestNeighbors (x, y, radius, getPoint (x,y).getVector3fMap (), no_of_nearest_neighbors, normal);
951 }
952 
953 namespace
954 { // Anonymous namespace, so that this is only accessible in this file
955  struct NeighborWithDistance
956  { // local struct to help us with sorting
957  float distance;
958  const PointWithRange* neighbor;
959  bool operator < (const NeighborWithDistance& other) const { return distance<other.distance;}
960  };
961 }
962 
963 /////////////////////////////////////////////////////////////////////////
964 bool
965 RangeImage::getSurfaceInformation (int x, int y, int radius, const Eigen::Vector3f& point, int no_of_closest_neighbors, int step_size,
966  float& max_closest_neighbor_distance_squared,
967  Eigen::Vector3f& normal, Eigen::Vector3f& mean, Eigen::Vector3f& eigen_values,
968  Eigen::Vector3f* normal_all_neighbors, Eigen::Vector3f* mean_all_neighbors,
969  Eigen::Vector3f* eigen_values_all_neighbors) const
970 {
971  max_closest_neighbor_distance_squared=0.0f;
972  normal.setZero (); mean.setZero (); eigen_values.setZero ();
973  if (normal_all_neighbors!=nullptr)
974  normal_all_neighbors->setZero ();
975  if (mean_all_neighbors!=nullptr)
976  mean_all_neighbors->setZero ();
977  if (eigen_values_all_neighbors!=nullptr)
978  eigen_values_all_neighbors->setZero ();
979 
980  const auto sqrt_blocksize = 2 * radius + 1;
981  const auto blocksize = sqrt_blocksize * sqrt_blocksize;
982 
983  PointWithRange given_point;
984  given_point.x=point[0]; given_point.y=point[1]; given_point.z=point[2];
985 
986  std::vector<NeighborWithDistance> ordered_neighbors (blocksize);
987  int neighbor_counter = 0;
988  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
989  {
990  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
991  {
992  if (!isValid (x2, y2))
993  continue;
994  NeighborWithDistance& neighbor_with_distance = ordered_neighbors[neighbor_counter];
995  neighbor_with_distance.neighbor = &getPoint (x2, y2);
996  neighbor_with_distance.distance = squaredEuclideanDistance (given_point, *neighbor_with_distance.neighbor);
997  ++neighbor_counter;
998  }
999  }
1000  no_of_closest_neighbors = (std::min) (neighbor_counter, no_of_closest_neighbors);
1001 
1002  std::sort (ordered_neighbors.begin (), ordered_neighbors.begin () + neighbor_counter); // Normal sort seems to be the fastest method (faster than partial_sort)
1003  //std::stable_sort (ordered_neighbors, ordered_neighbors+neighbor_counter);
1004  //std::partial_sort (ordered_neighbors, ordered_neighbors+no_of_closest_neighbors, ordered_neighbors+neighbor_counter);
1005 
1006  max_closest_neighbor_distance_squared = ordered_neighbors[no_of_closest_neighbors-1].distance;
1007  //float max_distance_squared = max_closest_neighbor_distance_squared;
1008  float max_distance_squared = max_closest_neighbor_distance_squared*4.0f; // Double the allowed distance value
1009  //max_closest_neighbor_distance_squared = max_distance_squared;
1010 
1011  VectorAverage3f vector_average;
1012  //for (int neighbor_idx=0; neighbor_idx<no_of_closest_neighbors; ++neighbor_idx)
1013  int neighbor_idx;
1014  for (neighbor_idx=0; neighbor_idx<neighbor_counter; ++neighbor_idx)
1015  {
1016  if (ordered_neighbors[neighbor_idx].distance > max_distance_squared)
1017  break;
1018  //std::cout << ordered_neighbors[neighbor_idx].distance<<"\n";
1019  vector_average.add (ordered_neighbors[neighbor_idx].neighbor->getVector3fMap ());
1020  }
1021 
1022  if (vector_average.getNoOfSamples () < 3)
1023  return false;
1024  //std::cout << PVARN (vector_average.getNoOfSamples ());
1025  Eigen::Vector3f eigen_vector2, eigen_vector3;
1026  vector_average.doPCA (eigen_values, normal, eigen_vector2, eigen_vector3);
1027  Eigen::Vector3f viewing_direction = (getSensorPos ()-point).normalized ();
1028  if (normal.dot (viewing_direction) < 0.0f)
1029  normal *= -1.0f;
1030  mean = vector_average.getMean ();
1031 
1032  if (normal_all_neighbors==nullptr)
1033  return true;
1034 
1035  // Add remaining neighbors
1036  for (int neighbor_idx2=neighbor_idx; neighbor_idx2<neighbor_counter; ++neighbor_idx2)
1037  vector_average.add (ordered_neighbors[neighbor_idx2].neighbor->getVector3fMap ());
1038 
1039  vector_average.doPCA (*eigen_values_all_neighbors, *normal_all_neighbors, eigen_vector2, eigen_vector3);
1040  //std::cout << PVARN (vector_average.getNoOfSamples ())<<".\n";
1041  if (normal_all_neighbors->dot (viewing_direction) < 0.0f)
1042  *normal_all_neighbors *= -1.0f;
1043  *mean_all_neighbors = vector_average.getMean ();
1044 
1045  //std::cout << viewing_direction[0]<<","<<viewing_direction[1]<<","<<viewing_direction[2]<<"\n";
1046 
1047  return true;
1048 }
1049 
1050 /////////////////////////////////////////////////////////////////////////
1051 float
1052 RangeImage::getSquaredDistanceOfNthNeighbor (int x, int y, int radius, int n, int step_size) const
1053 {
1054  const PointWithRange& point = getPoint (x, y);
1055  if (!std::isfinite (point.range))
1056  return -std::numeric_limits<float>::infinity ();
1057 
1058  const auto sqrt_blocksize = 2 * radius + 1;
1059  const auto blocksize = sqrt_blocksize * sqrt_blocksize;
1060  std::vector<float> neighbor_distances (blocksize);
1061  int neighbor_counter = 0;
1062  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
1063  {
1064  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
1065  {
1066  if (!isValid (x2, y2) || (x2==x&&y2==y))
1067  continue;
1068  const PointWithRange& neighbor = getPointNoCheck (x2,y2);
1069  float& neighbor_distance = neighbor_distances[neighbor_counter++];
1070  neighbor_distance = squaredEuclideanDistance (point, neighbor);
1071  }
1072  }
1073  std::sort (neighbor_distances.begin (), neighbor_distances.begin () + neighbor_counter); // Normal sort seems to be
1074  // the fastest method (faster than partial_sort)
1075  n = (std::min) (neighbor_counter, n);
1076  return neighbor_distances[n-1];
1077 }
1078 
1079 
1080 /////////////////////////////////////////////////////////////////////////
1081 bool
1082 RangeImage::getNormalForClosestNeighbors (int x, int y, int radius, const Eigen::Vector3f& point, int no_of_nearest_neighbors,
1083  Eigen::Vector3f& normal, Eigen::Vector3f* point_on_plane, int step_size) const
1084 {
1085  Eigen::Vector3f mean, eigen_values;
1086  float used_squared_max_distance;
1087  bool ret = getSurfaceInformation (x, y, radius, point, no_of_nearest_neighbors, step_size, used_squared_max_distance,
1088  normal, mean, eigen_values);
1089 
1090  if (ret)
1091  {
1092  if (point_on_plane != nullptr)
1093  *point_on_plane = (normal.dot (mean) - normal.dot (point))*normal + point;
1094  }
1095  return ret;
1096 }
1097 
1098 
1099 /////////////////////////////////////////////////////////////////////////
1100 float
1101 RangeImage::getCurvature (int x, int y, int radius, int step_size) const
1102 {
1103  VectorAverage3f vector_average;
1104  for (int y2=y-radius; y2<=y+radius; y2+=step_size)
1105  {
1106  for (int x2=x-radius; x2<=x+radius; x2+=step_size)
1107  {
1108  if (!isInImage (x2, y2))
1109  continue;
1110  const PointWithRange& point = getPoint (x2, y2);
1111  if (!std::isfinite (point.range))
1112  continue;
1113  vector_average.add (Eigen::Vector3f (point.x, point.y, point.z));
1114  }
1115  }
1116  if (vector_average.getNoOfSamples () < 3)
1117  return false;
1118  Eigen::Vector3f eigen_values;
1119  vector_average.doPCA (eigen_values);
1120  return eigen_values[0]/eigen_values.sum ();
1121 }
1122 
1123 
1124 /////////////////////////////////////////////////////////////////////////
1125 template <typename PointCloudTypeWithViewpoints> Eigen::Vector3f
1126 RangeImage::getAverageViewPoint (const PointCloudTypeWithViewpoints& point_cloud)
1127 {
1128  Eigen::Vector3f average_viewpoint (0,0,0);
1129  int point_counter = 0;
1130  for (const auto& point: point_cloud.points)
1131  {
1132  if (!std::isfinite (point.vp_x) || !std::isfinite (point.vp_y) || !std::isfinite (point.vp_z))
1133  continue;
1134  average_viewpoint[0] += point.vp_x;
1135  average_viewpoint[1] += point.vp_y;
1136  average_viewpoint[2] += point.vp_z;
1137  ++point_counter;
1138  }
1139  average_viewpoint /= point_counter;
1140 
1141  return average_viewpoint;
1142 }
1143 
1144 /////////////////////////////////////////////////////////////////////////
1145 bool
1146 RangeImage::getViewingDirection (int x, int y, Eigen::Vector3f& viewing_direction) const
1147 {
1148  if (!isValid (x, y))
1149  return false;
1150  viewing_direction = (getPoint (x,y).getVector3fMap ()-getSensorPos ()).normalized ();
1151  return true;
1152 }
1153 
1154 /////////////////////////////////////////////////////////////////////////
1155 void
1156 RangeImage::getViewingDirection (const Eigen::Vector3f& point, Eigen::Vector3f& viewing_direction) const
1157 {
1158  viewing_direction = (point-getSensorPos ()).normalized ();
1159 }
1160 
1161 /////////////////////////////////////////////////////////////////////////
1162 Eigen::Affine3f
1163 RangeImage::getTransformationToViewerCoordinateFrame (const Eigen::Vector3f& point) const
1164 {
1165  Eigen::Affine3f transformation;
1166  getTransformationToViewerCoordinateFrame (point, transformation);
1167  return transformation;
1168 }
1169 
1170 /////////////////////////////////////////////////////////////////////////
1171 void
1172 RangeImage::getTransformationToViewerCoordinateFrame (const Eigen::Vector3f& point, Eigen::Affine3f& transformation) const
1173 {
1174  Eigen::Vector3f viewing_direction = (point-getSensorPos ()).normalized ();
1175  getTransformationFromTwoUnitVectorsAndOrigin (Eigen::Vector3f (0.0f, -1.0f, 0.0f), viewing_direction, point, transformation);
1176 }
1177 
1178 /////////////////////////////////////////////////////////////////////////
1179 void
1180 RangeImage::getRotationToViewerCoordinateFrame (const Eigen::Vector3f& point, Eigen::Affine3f& transformation) const
1181 {
1182  Eigen::Vector3f viewing_direction = (point-getSensorPos ()).normalized ();
1183  getTransformationFromTwoUnitVectors (Eigen::Vector3f (0.0f, -1.0f, 0.0f), viewing_direction, transformation);
1184 }
1185 
1186 /////////////////////////////////////////////////////////////////////////
1187 inline void
1188 RangeImage::setAngularResolution (float angular_resolution)
1189 {
1190  angular_resolution_x_ = angular_resolution_y_ = angular_resolution;
1192 }
1193 
1194 /////////////////////////////////////////////////////////////////////////
1195 inline void
1196 RangeImage::setAngularResolution (float angular_resolution_x, float angular_resolution_y)
1197 {
1198  angular_resolution_x_ = angular_resolution_x;
1200  angular_resolution_y_ = angular_resolution_y;
1202 }
1203 
1204 /////////////////////////////////////////////////////////////////////////
1205 inline void
1206 RangeImage::setTransformationToRangeImageSystem (const Eigen::Affine3f& to_range_image_system)
1207 {
1208  to_range_image_system_ = to_range_image_system;
1210 }
1211 
1212 /////////////////////////////////////////////////////////////////////////
1213 inline void
1214 RangeImage::getAngularResolution (float& angular_resolution_x, float& angular_resolution_y) const
1215 {
1216  angular_resolution_x = angular_resolution_x_;
1217  angular_resolution_y = angular_resolution_y_;
1218 }
1219 
1220 /////////////////////////////////////////////////////////////////////////
1221 template <typename PointCloudType> void
1222 RangeImage::integrateFarRanges (const PointCloudType& far_ranges)
1223 {
1224  float x_real, y_real, range_of_current_point;
1225  for (const auto& point: far_ranges.points)
1226  {
1227  //if (!isFinite (point)) // Check for NAN etc
1228  //continue;
1229  Vector3fMapConst current_point = point.getVector3fMap ();
1230 
1231  this->getImagePoint (current_point, x_real, y_real, range_of_current_point);
1232 
1233  int floor_x = static_cast<int> (pcl_lrint (std::floor (x_real))),
1234  floor_y = static_cast<int> (pcl_lrint (std::floor (y_real))),
1235  ceil_x = static_cast<int> (pcl_lrint (std::ceil (x_real))),
1236  ceil_y = static_cast<int> (pcl_lrint (std::ceil (y_real)));
1237 
1238  int neighbor_x[4], neighbor_y[4];
1239  neighbor_x[0]=floor_x; neighbor_y[0]=floor_y;
1240  neighbor_x[1]=floor_x; neighbor_y[1]=ceil_y;
1241  neighbor_x[2]=ceil_x; neighbor_y[2]=floor_y;
1242  neighbor_x[3]=ceil_x; neighbor_y[3]=ceil_y;
1243 
1244  for (int i=0; i<4; ++i)
1245  {
1246  int x=neighbor_x[i], y=neighbor_y[i];
1247  if (!isInImage (x, y))
1248  continue;
1249  PointWithRange& image_point = getPoint (x, y);
1250  if (!std::isfinite (image_point.range))
1251  image_point.range = std::numeric_limits<float>::infinity ();
1252  }
1253  }
1254 }
1255 
1256 } // namespace pcl
pcl_macros.h
Defines all the PCL and non-PCL macros used.
pcl::RangeImage::getImpactAngle
float getImpactAngle(const PointWithRange &point1, const PointWithRange &point2) const
Calculate the impact angle based on the sensor position and the two given points - will return -INFIN...
Definition: range_image.hpp:620
pcl::RangeImage::getMaxAngleSize
static float getMaxAngleSize(const Eigen::Affine3f &viewer_pose, const Eigen::Vector3f &center, float radius)
Get the size of a certain area when seen from the given pose.
Definition: range_image.hpp:788
pcl
Definition: convolution.h:46
pcl::RangeImage::getTransformationToViewerCoordinateFrame
Eigen::Affine3f getTransformationToViewerCoordinateFrame(const Eigen::Vector3f &point) const
Get the local coordinate frame with 0,0,0 in point, upright and Z as the viewing direction.
Definition: range_image.hpp:1163
pcl::RangeImage::image_offset_y_
int image_offset_y_
Position of the top left corner of the range image compared to an image of full size (360x180 degrees...
Definition: range_image.h:776
pcl::RangeImage::isObserved
bool isObserved(int x, int y) const
Check if a point is inside of the image and has either a finite range or a max reading (range=INFINIT...
Definition: range_image.hpp:464
pcl::PointCloud< PointWithRange >::height
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:393
pcl::RangeImage::lookup_table_size
static const int lookup_table_size
Definition: range_image.h:785
pcl::RangeImage::asinLookUp
static float asinLookUp(float value)
Query the asin lookup table.
Definition: range_image.hpp:53
pcl::RangeImage::angular_resolution_y_reciprocal_
float angular_resolution_y_reciprocal_
1.0/angular_resolution_y_ - provided for better performance of multiplication compared to division
Definition: range_image.h:774
pcl::geometry::distance
float distance(const PointT &p1, const PointT &p2)
Definition: geometry.h:60
pcl::PointCloud< PointWithRange >::points
std::vector< PointWithRange, Eigen::aligned_allocator< PointWithRange > > points
The point data.
Definition: point_cloud.h:388
pcl::VectorAverage::getMean
const VectorType & getMean() const
Get the mean of the added vectors.
Definition: vector_average.h:71
pcl::isFinite
bool isFinite(const PointT &pt)
Tests if the 3D components of a point are all finite param[in] pt point to be tested return true if f...
Definition: point_tests.h:55
pcl::RangeImage::getAverageViewPoint
static Eigen::Vector3f getAverageViewPoint(const PointCloudTypeWithViewpoints &point_cloud)
Get the average viewpoint of a point cloud where each point carries viewpoint information as vp_x,...
Definition: range_image.hpp:1126
pcl::RangeImage::isInImage
bool isInImage(int x, int y) const
Check if a point is inside of the image.
Definition: range_image.hpp:443
pcl::getTransformationFromTwoUnitVectors
void getTransformationFromTwoUnitVectors(const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, Eigen::Affine3f &transformation)
Get the unique 3D rotation that will rotate z_axis into (0,0,1) and y_direction into a vector with x=...
Definition: eigen.hpp:554
pcl::RangeImage::to_world_system_
Eigen::Affine3f to_world_system_
Inverse of to_range_image_system_.
Definition: range_image.h:769
pcl_lrintf
#define pcl_lrintf(x)
Definition: pcl_macros.h:254
pcl::RangeImage::calculate3DPoint
void calculate3DPoint(float image_x, float image_y, float range, PointWithRange &point) const
Calculate the 3D point according to the given image point and range.
Definition: range_image.hpp:585
pcl::RangeImage::getRotationToViewerCoordinateFrame
void getRotationToViewerCoordinateFrame(const Eigen::Vector3f &point, Eigen::Affine3f &transformation) const
Same as above, but only returning the rotation.
Definition: range_image.hpp:1180
pcl::RangeImage::createFromPointCloudWithViewpoints
void createFromPointCloudWithViewpoints(const PointCloudTypeWithViewpoints &point_cloud, float angular_resolution, float max_angle_width, float max_angle_height, CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f, int border_size=0)
Create the depth image from a point cloud, using the average viewpoint of the points (vp_x,...
Definition: range_image.hpp:206
pcl::RangeImage::getEigenVector3f
static Eigen::Vector3f getEigenVector3f(const PointWithRange &point)
Get Eigen::Vector3f from PointWithRange.
Definition: range_image.hpp:795
pcl::RangeImage::angular_resolution_y_
float angular_resolution_y_
Angular resolution of the range image in y direction in radians per pixel.
Definition: range_image.h:771
pcl::RangeImage::image_offset_x_
int image_offset_x_
Definition: range_image.h:776
pcl::RangeImage::getImpactAngleBasedOnLocalNormal
float getImpactAngleBasedOnLocalNormal(int x, int y, int radius) const
Extract a local normal (with a heuristic not to include background points) and calculate the impact a...
Definition: range_image.hpp:884
pcl::RangeImage::isMaxRange
bool isMaxRange(int x, int y) const
Check if a point is a max range (range=INFINITY) - please check isInImage or isObserved first!
Definition: range_image.hpp:471
pcl::RangeImage::setAngularResolution
void setAngularResolution(float angular_resolution)
Set the angular resolution of the range image.
Definition: range_image.hpp:1188
pcl::RangeImage::getAnglesFromImagePoint
void getAnglesFromImagePoint(float image_x, float image_y, float &angle_x, float &angle_y) const
Get the angles corresponding to the given image point.
Definition: range_image.hpp:602
pcl::RangeImage::angular_resolution_x_
float angular_resolution_x_
Angular resolution of the range image in x direction in radians per pixel.
Definition: range_image.h:770
pcl::PointCloud::VectorType
std::vector< PointT, Eigen::aligned_allocator< PointT > > VectorType
Definition: point_cloud.h:404
pcl::RangeImage::to_range_image_system_
Eigen::Affine3f to_range_image_system_
Inverse of to_world_system_.
Definition: range_image.h:768
pcl::RangeImage::getEuclideanDistanceSquared
float getEuclideanDistanceSquared(int x1, int y1, int x2, int y2) const
Get the squared euclidean distance between the two image points.
Definition: range_image.hpp:842
pcl::RangeImage::createFromPointCloudWithKnownSize
void createFromPointCloudWithKnownSize(const PointCloudType &point_cloud, float angular_resolution, const Eigen::Vector3f &point_cloud_center, float point_cloud_radius, const Eigen::Affine3f &sensor_pose=Eigen::Affine3f::Identity(), CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f, int border_size=0)
Create the depth image from a point cloud, getting a hint about the size of the scene for faster calc...
Definition: range_image.hpp:145
pcl::RangeImage::checkPoint
float checkPoint(const Eigen::Vector3f &point, PointWithRange &point_in_image) const
point_in_image will be the point in the image at the position the given point would be.
Definition: range_image.hpp:394
pcl::RangeImage::atan_lookup_table
static std::vector< float > atan_lookup_table
Definition: range_image.h:787
pcl::RangeImage::getCurvature
float getCurvature(int x, int y, int radius, int step_size) const
Calculates the curvature in a point using pca.
Definition: range_image.hpp:1101
pcl::RangeImage::createFromPointCloud
void createFromPointCloud(const PointCloudType &point_cloud, float angular_resolution=pcl::deg2rad(0.5f), float max_angle_width=pcl::deg2rad(360.0f), float max_angle_height=pcl::deg2rad(180.0f), const Eigen::Affine3f &sensor_pose=Eigen::Affine3f::Identity(), CoordinateFrame coordinate_frame=CAMERA_FRAME, float noise_level=0.0f, float min_range=0.0f, int border_size=0)
Create the depth image from a point cloud.
Definition: range_image.hpp:97
pcl::PointCloud< PointWithRange >::width
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:391
pcl::RangeImage::cos_lookup_table
static std::vector< float > cos_lookup_table
Definition: range_image.h:788
pcl::RangeImage::doZBuffer
void doZBuffer(const PointCloudType &point_cloud, float noise_level, float min_range, int &top, int &right, int &bottom, int &left)
Integrate the given point cloud into the current range image using a z-buffer.
Definition: range_image.hpp:233
pcl::RangeImage::getSensorPos
const Eigen::Vector3f getSensorPos() const
Get the sensor position.
Definition: range_image.hpp:676
pcl::squaredEuclideanDistance
float squaredEuclideanDistance(const PointType1 &p1, const PointType2 &p2)
Calculate the squared euclidean distance between the two given points.
Definition: distances.h:182
pcl::_PointWithRange::range
float range
Definition: point_types.hpp:1105
pcl::RangeImage::cosLookUp
static float cosLookUp(float value)
Query the cos lookup table.
Definition: range_image.hpp:89
pcl::RangeImage::recalculate3DPointPositions
PCL_EXPORTS void recalculate3DPointPositions()
Recalculate all 3D point positions according to their pixel position and range.
pcl::RangeImage::getAngularResolution
float getAngularResolution() const
Getter for the angular resolution of the range image in x direction in radians per pixel.
Definition: range_image.h:352
pcl::VectorAverage::getNoOfSamples
unsigned int getNoOfSamples()
Get the number of added vectors.
Definition: vector_average.h:83
M_PI
#define M_PI
Definition: pcl_macros.h:201
pcl::VectorAverage::doPCA
void doPCA(VectorType &eigen_values, VectorType &eigen_vector1, VectorType &eigen_vector2, VectorType &eigen_vector3) const
Do Principal component analysis.
Definition: vector_average.hpp:84
pcl::getTransformationFromTwoUnitVectorsAndOrigin
void getTransformationFromTwoUnitVectorsAndOrigin(const Eigen::Vector3f &y_direction, const Eigen::Vector3f &z_axis, const Eigen::Vector3f &origin, Eigen::Affine3f &transformation)
Get the transformation that will translate origin to (0,0,0) and rotate z_axis into (0,...
Definition: eigen.hpp:573
pcl::deg2rad
float deg2rad(float alpha)
Convert an angle from degrees to radians.
Definition: angles.hpp:67
pcl::RangeImage::CoordinateFrame
CoordinateFrame
Definition: range_image.h:63
pcl::RangeImage::getAverageEuclideanDistance
float getAverageEuclideanDistance(int x, int y, int offset_x, int offset_y, int max_steps) const
Doing the above for some steps in the given direction and averaging.
Definition: range_image.hpp:857
pcl::VectorAverage
Calculates the weighted average and the covariance matrix.
Definition: vector_average.h:55
pcl::PointCloud< PointWithRange >::is_dense
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:396
pcl::RangeImage::getAcutenessValue
float getAcutenessValue(const PointWithRange &point1, const PointWithRange &point2) const
Calculate a score [0,1] that tells how acute the impact angle is (1.0f - getImpactAngle/90deg) will r...
Definition: range_image.hpp:652
pcl::RangeImage::getImagePointFromAngles
void getImagePointFromAngles(float angle_x, float angle_y, float &image_x, float &image_y) const
Get the image point corresponding to the given angles.
Definition: range_image.hpp:427
pcl::PointCloud< PointWithRange >::size
std::size_t size() const
Definition: point_cloud.h:436
pcl::VectorAverage::add
void add(const VectorType &sample, real weight=1.0)
Add a new sample.
Definition: vector_average.hpp:63
pcl::RangeImage::getSurfaceAngleChange
void getSurfaceAngleChange(int x, int y, int radius, float &angle_change_x, float &angle_change_y) const
Calculates, how much the surface changes at a point.
Definition: range_image.hpp:683
pcl::RangeImage::real2DToInt2D
void real2DToInt2D(float x, float y, int &xInt, int &yInt) const
Transforms an image point in float values to an image point in int values.
Definition: range_image.hpp:435
pcl::Vector3fMapConst
const Eigen::Map< const Eigen::Vector3f > Vector3fMapConst
Definition: point_types.hpp:181
pcl::RangeImage::getViewingDirection
bool getViewingDirection(int x, int y, Eigen::Vector3f &viewing_direction) const
Get the viewing direction for the given point.
Definition: range_image.hpp:1146
pcl::RangeImage::integrateFarRanges
void integrateFarRanges(const PointCloudType &far_ranges)
Integrates the given far range measurements into the range image.
Definition: range_image.hpp:1222
pcl::RangeImage::getNormalBasedAcutenessValue
float getNormalBasedAcutenessValue(int x, int y, int radius) const
Calculate a score [0,1] that tells how acute the impact angle is (1.0f - getImpactAngle/90deg) This u...
Definition: range_image.hpp:925
pcl::RangeImage::isValid
bool isValid(int x, int y) const
Check if a point is inside of the image and has a finite range.
Definition: range_image.hpp:450
pcl::RangeImage::unobserved_point
PointWithRange unobserved_point
This point is used to be able to return a reference to a non-existing point.
Definition: range_image.h:778
pcl::PointWithRange
A point structure representing Euclidean xyz coordinates, padded with an extra range float.
Definition: point_types.hpp:1116
pcl::RangeImage::atan2LookUp
static float atan2LookUp(float y, float x)
Query the std::atan2 lookup table.
Definition: range_image.hpp:63
pcl::RangeImage::asin_lookup_table
static std::vector< float > asin_lookup_table
Definition: range_image.h:786
distances.h
pcl::RangeImage::getImagePoint
virtual void getImagePoint(const Eigen::Vector3f &point, float &image_x, float &image_y, float &range) const
Get imagePoint from 3D point in world coordinates.
Definition: range_image.hpp:355
pcl::RangeImage::getRangeDifference
float getRangeDifference(const Eigen::Vector3f &point) const
Returns the difference in range between the given point and the range of the point in the image at th...
Definition: range_image.hpp:408
ERASE_ARRAY
#define ERASE_ARRAY(var, size)
Definition: pcl_macros.h:304
pcl_lrint
#define pcl_lrint(x)
Definition: pcl_macros.h:253
pcl::Vector4fMap
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
Definition: point_types.hpp:182
pcl::RangeImage::getNormal
bool getNormal(int x, int y, int radius, Eigen::Vector3f &normal, int step_size=1) const
Calculate the normal of an image point using the neighbors with a maximum pixel distance of radius.
Definition: range_image.hpp:899
pcl::RangeImage::angular_resolution_x_reciprocal_
float angular_resolution_x_reciprocal_
1.0/angular_resolution_x_ - provided for better performance of multiplication compared to division
Definition: range_image.h:772
pcl::RangeImage::getPoint
const PointWithRange & getPoint(int image_x, int image_y) const
Return the 3D point with range at the given image position.
Definition: range_image.hpp:479
pcl::RangeImage::getSurfaceInformation
bool getSurfaceInformation(int x, int y, int radius, const Eigen::Vector3f &point, int no_of_closest_neighbors, int step_size, float &max_closest_neighbor_distance_squared, Eigen::Vector3f &normal, Eigen::Vector3f &mean, Eigen::Vector3f &eigen_values, Eigen::Vector3f *normal_all_neighbors=nullptr, Eigen::Vector3f *mean_all_neighbors=nullptr, Eigen::Vector3f *eigen_values_all_neighbors=nullptr) const
Same as above but extracts some more data and can also return the extracted information for all neigh...
Definition: range_image.hpp:965
pcl::RangeImage::getNormalForClosestNeighbors
bool getNormalForClosestNeighbors(int x, int y, int radius, const PointWithRange &point, int no_of_nearest_neighbors, Eigen::Vector3f &normal, int step_size=1) const
Same as above, but only the no_of_nearest_neighbors points closest to the given point are considered.
Definition: range_image.hpp:937
pcl::RangeImage::getPointNoCheck
const PointWithRange & getPointNoCheck(int image_x, int image_y) const
Return the 3D point with range at the given image position.
Definition: range_image.hpp:488
pcl::RangeImage::setTransformationToRangeImageSystem
void setTransformationToRangeImageSystem(const Eigen::Affine3f &to_range_image_system)
Setter for the transformation from the range image system (the sensor coordinate frame) into the worl...
Definition: range_image.hpp:1206
pcl::RangeImage::getSquaredDistanceOfNthNeighbor
float getSquaredDistanceOfNthNeighbor(int x, int y, int radius, int n, int step_size) const
Definition: range_image.hpp:1052
pcl::RangeImage::getCoordinateFrameTransformation
static PCL_EXPORTS void getCoordinateFrameTransformation(RangeImage::CoordinateFrame coordinate_frame, Eigen::Affine3f &transformation)
Get the transformation that transforms the given coordinate frame into CAMERA_FRAME.
pcl::RangeImage::cropImage
PCL_EXPORTS void cropImage(int border_size=0, int top=-1, int right=-1, int bottom=-1, int left=-1)
Cut the range image to the minimal size so that it still contains all actual range readings.
pcl::RangeImage::get1dPointAverage
void get1dPointAverage(int x, int y, int delta_x, int delta_y, int no_of_points, PointWithRange &average_point) const
Calculates the average 3D position of the no_of_points points described by the start point x,...
Definition: range_image.hpp:802