"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import holoviews as hv\n",
"from holoviews import opts\n",
"hv.extension('bokeh')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"``Histogram``s partition the `x` axis into discrete (but not necessarily regular) bins, showing counts in each as a bar. A ``Histogram`` accepts the output of ``np.histogram`` as input, which consists of a tuple of the histogram values with a shape of ``N`` and bin edges with a shape of ``N+1``. As a simple example we will generate a histogram of a normal distribution with 20 bins."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(1)\n",
"data = np.random.randn(10000)\n",
"frequencies, edges = np.histogram(data, 20)\n",
"print('Values: %s, Edges: %s' % (frequencies.shape[0], edges.shape[0]))\n",
"hv.Histogram((edges, frequencies))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ``Histogram`` Element will also expand evenly sampled bin centers, therefore we can easily cast between a linearly sampled ``Curve`` or ``Scatter`` and a ``Histogram``."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xs = np.linspace(0, np.pi*2)\n",
"ys = np.sin(xs)\n",
"curve = hv.Curve((xs, ys))\n",
"curve + hv.Histogram(curve)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Like most other elements a ``Histogram`` also supports using ``dim`` transforms to map dimensions to visual attributes. To demonstrate this we will use the ``bin`` op to bin the 'y' values into positive and negative values and map those to a 'blue' and 'red' ``fill_color``:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hv.Histogram(curve).opts(\n",
" opts.Histogram(fill_color=hv.dim('y').bin(bins=[-1, 0, 1], labels=['red', 'blue'])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ``.hist`` method is an easy way to compute a histogram from an existing Element:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"points = hv.Points(np.random.randn(100,2))\n",
"points.hist(dimension=['x','y'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The ``.hist`` method is just a convenient wrapper around the ``histogram`` operation that computes a histogram from an Element, and then adjoins the resulting histogram to the main plot. You can also do this process manually; here we create an additional set of ``Points``, compute a ``Histogram`` for the 'x' and 'y' dimension on each, and then overlay them and adjoin to the plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from holoviews.operation import histogram\n",
"points2 = hv.Points(np.random.randn(100,2)*2+1)\n",
"\n",
"xhist, yhist = (histogram(points2, bin_range=(-5, 5), dimension=dim) *\n",
" histogram(points, bin_range=(-5, 5), dimension=dim) \n",
" for dim in 'xy')\n",
"\n",
"composition = (points2 * points) << yhist.opts(width=125) << xhist.opts(height=125)\n",
"composition.opts(opts.Histogram(alpha=0.3))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For full documentation and the available style and plot options, use ``hv.help(hv.Histogram).``"
]
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}