{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
Histogram Element
\n", "
Dependencies
Matplotlib
\n", "
Backends
\n", "
Matplotlib
\n", "
Bokeh
\n", "
Plotly
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "from holoviews import opts\n", "\n", "hv.extension('matplotlib')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "``Histogram``s partition the `x` axis into discrete (but not necessarily regular) bins, showing counts in each as a bar. A ``Histogram`` accepts the output of ``np.histogram`` as input, which consists of a tuple of the histogram values with a shape of ``N`` and bin edges with a shape of ``N+1``. As a simple example we will generate a histogram of a normal distribution with 20 bins." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.random.seed(1)\n", "data = np.random.randn(10000)\n", "frequencies, edges = np.histogram(data, 20)\n", "print('Values: %s, Edges: %s' % (frequencies.shape[0], edges.shape[0]))\n", "hv.Histogram((edges, frequencies))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``Histogram`` Element will also expand evenly sampled bin centers, therefore we can easily cast between a linearly sampled Curve or Scatter and a Histogram." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "xs = np.linspace(0, np.pi*2)\n", "ys = np.sin(xs)\n", "curve = hv.Curve((xs, ys))\n", "curve + hv.Histogram(curve)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Like most other elements a ``Histogram`` also supports using ``dim`` transforms to map dimensions to visual attributes. To demonstrate this we will use the ``bin`` transform to bin the 'y' values into positive and negative values and map those to a 'blue' and 'red' ``fill_color``:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "hv.Histogram(curve).opts(color=hv.dim('y').bin(bins=[-1, 0, 1], labels=['red', 'blue']))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``.hist`` method is an easy way to compute a histogram from an existing Element:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "points = hv.Points(np.random.randn(100,2))\n", "\n", "points.hist(dimension=['x','y'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``.hist`` method is just a convenient wrapper around the ``histogram`` operation that computes a histogram from an Element, and then adjoins the resulting histogram to the main plot. You can also do this process manually; here we create an additional set of ``Points``, compute a ``Histogram`` for the 'x' and 'y' dimension on each, and then overlay them and adjoin to the plot." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from holoviews.operation import histogram\n", "points2 = hv.Points(np.random.randn(100,2)*2+1).redim.range(x=(-5, 5), y=(-5, 5))\n", "\n", "xhist, yhist = (histogram(points2, bin_range=(-5, 5), dimension=dim) *\n", " histogram(points, bin_range=(-5, 5), dimension=dim) \n", " for dim in 'xy')\n", "((points2 * points) << yhist << xhist).opts(\n", " opts.Histogram(alpha=0.3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.Histogram).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }