TEST_MAT
Test Matrices
TEST_MAT
is a MATLAB library which
defines various test matrices.
A wide range of matrix
dimensions, forms and properties are available. These matrices may be
useful in testing an algorithm for correctness on a variety of problems.
Many of the matrices can be rectangular, with the user specifying
the number of rows and columns. Almost all the matrices can be
made of arbitrary size, with the user specifying the dimension.
Many different matrix zero structures are available, including diagonal,
bidiagonal, tridiagonal, pentadiagonal, banded, upper and lower
triangular, and Hessenberg.
Many different matrix symmetry patterns are available, including
symmetric, antisymmetric, persymmetric, circulant, Toeplitz, and
Hankel.
Matrices are available with known inverses, condition numbers, determinants, rank,
eigenvalues, and characteristic polynomials. Other matrix properties
include positive definiteness, positivity, zero/one, and
adjacency matrices.
Many of the matrices come from a MATLAB M file collection developed by
Nicholas Higham, Department of Mathematics, University of Manchester, and
maintained in the "test_matrix" file somewhere at
the MATLAB web site.
An earlier version of the collection is available, again as MATLAB
M files, in ACM TOMS Algorithm 694, in the TOMS directory of
the NETLIB web site.
Many of these matrices, and many other matrices, are available at
http://math.nist.gov,
the Matrix Market web site.
Licensing:
The computer code and data files described and made available on this web page
are distributed under
the GNU LGPL license.
Languages:
TEST_MAT is available in
a C version and
a C++ version and
a FORTRAN77 version and
a FORTRAN90 version and
a MATLAB version.
Related Data and Programs:
ARPACK,
a FORTRAN90 library which
uses Arnoldi methods
to compute some eigenvalues and eigenvectors of matrices,
which may be very large.
CONDITION,
a MATLAB library which
implements methods of computing or estimating the condition number of a matrix.
EISPACK,
a FORTRAN90 library which
computes eigenvalues
and eigenvectors of matrices.
LAPACK_EXAMPLES,
a FORTRAN90 program which
demonstrates the use of the LAPACK linear algebra library.
LINPACK,
a FORTRAN90 library which
factors matrices,
computes determinants and inverses, solves linear systems,
for real and complex arithmetic, single and double precision,
and for general, banded, symmetric, tridiagonal, or triangular
matrices.
LINPLUS,
a MATLAB library of routines for factoring matrices,
computing determinants and inverses, solving linear systems,
for real arithmetic for a variety of matrix storage formats.
MATRIX_EXPONENTIAL,
a MATLAB library which
demonstrates some simple approaches to the problem of computing the
exponential of a matrix.
TEST_EIGEN,
a MATLAB library which
implements test matrices for eigenvalue analysis.
TEST_MATRIX.
a MATLAB library which
contains Nick Higham's collection of test matrices.
TEST_MATRIX_EXPONENTIAL,
a MATLAB library which
defines a set of test cases for computing the matrix exponential.
Reference:
-
Milton Abramowitz, Irene Stegun,
Handbook of Mathematical Functions,
National Bureau of Standards, 1964,
ISBN: 0-486-61272-4,
LC: QA47.A34.
-
MJ Aegerter,
Construction of a Set of Test Matrices,
Communications of the ACM,
Volume 2, Number 8, August 1959, pages 10-12.
-
Marlow Anderson, Todd Feil,
Turning Lights Out With Linear Algebra,
Mathematics Magazine,
Volume 71, Number 4, October 1998, pages 300-303.
-
Wayne Barrett, Tyler Jarvis,
Spectral Properties of a Matrix of Redheffer,
Linear Algebra and Its Applications,
Volume 162-164, February 1992, pages 673-683.
-
Richard Beam, Robert Warming,
The asymptotic spectra of banded Toeplitz and
quasi-Toeplitz matrices,
SIAM Journal on Scientific and Statistical Computing,
Volume 14, Number 4, July 1993, pages 971-1006
-
Dario Bini, Paola Favati,
On a matrix algebra related to the discrete Hartley transform,
SIAM Journal on Matrix Analysis and Applications,
Volume 14, Number 2, April 1993, pages 500-507.
-
John Boothroyd,
Algorithm 274:
Generation of Hilbert Derived Test Matrix,
Communications of the ACM,
Volume 9, Number 1, January 1966, page 11.
-
Robert Brawer, Magnus Pirovino,
The linear algebra of the Pascal matrix,
Linear Algebra and Its Applications,
Volume 174, September 1992, pages 13-23.
-
Jacqueline Burm, Paul Fishback,
Period-3 Orbits Via Sylvester's Theorem and Resultants,
Mathematics Magazine,
Volume 74, Number 1, February 2001, pages 47-51.
-
Gregory Call, Daniel Velleman,
Pascal's Matrices,
American Mathematical Monthly,
Volume 100, Number 4, April 1993, pages 372-376.
-
Francoise Chaitin-Chatelin,
Eigenvalues of Matrices,
John Wiley, 1993,
ISBN: 0471935387,
LC: QA188.C44.
-
Ke Chen, Peter Giblin, Alan Irving,
Mathematical Explorations with MATLAB,
Cambridge University Press, 1999,
ISBN: 0-521-63920-4.
-
Man-Duen Choi,
Tricks or treats with the Hilbert matrix,
American Mathematical Monthly,
Volume 90, Number 5, May 1983, pages 301-312.
-
TS Chow,
A class of Hessenberg matrices with known eigenvalues and
inverses,
SIAM Review,
Volume 11, Number 3, July 1969, pages 391-395.
-
Paul Clement,
A class of triple-diagonal matrices for test purposes,
SIAM Review,
Volume 1, Number 1, January 1959, pages 50-52.
-
Alan Cline, Russell Rew,
A set of counterexamples to three condition number estimators,
SIAM Journal on Scientific and Statistical Computing,
Volume 4, Number 4, December 1983, pages 602-611.
-
David Collison,
Algorithm 117: and Algorithm 118:
Magic square (even order) and Magic square (odd order),
Communications of the ACM,
Volume 5, Number 8, August 1962, pages 435-436.
-
George Cybenko, Charles vanLoan,
Computing the minimum eigenvalue of a symmetric positive definite
Toeplitz matrix,
SIAM Journal on Scientific and Statistical Computing,
Volume 7, Number 1, January 1986, pages 123-131.
-
George Dantzig,
Linear Programming and Extensions,
Princeton University Press, 1998,
ISBN: 0691059136,<
LC: QA265.D3.
-
Philip Davis,
Circulant Matrices,
Second Edition,
Chelsea, 1994,
ISBN: 0828403384,
LC: QA188.D37.
-
Fred Dorr,
An example of ill-conditioning in the numerical solution of
singular perturbation problems,
Mathematics of Computation,
Volume 25, Number 114, April 1971, pages 271-283.
-
Patricia Eberlein,
A Two-Parameter Test Matrix,
Mathematics of Computation,
Volume 18, Number 86, April 1964, pages 296-298.
-
Alan Edelman, Eric Kostlan,
The road from Kac's matrix to Kac's random polynomials.
in Proceedings of the Fifth SIAM Conference on
Applied Linear Algebra,
edited by John Lewis,
SIAM, 1994,
ISBN: 0898713366,
LC: QA184.S58.
-
Graeme Fairweather,
On the eigenvalues and eigenvectors of a class of
Hessenberg matrices,
SIAM Review,
Volume 13, Number 2, April 1971, pages 220-221.
-
WL Frank,
Computing eigenvalues of complex matrices by determinant
evaluation, and by methods of Danilewski and Wielandt,
Journal of the Society for Industrial and Applied Mathematics,
Volume 6, 1958, pages 378-392.
-
Charles Gear,
A simple set of test matrices for eigenvalue programs,
Mathematics of Computation,
Volume 23, Number 105, January 1969, pages 119-125.
-
Gene Golub, Charles VanLoan,
Matrix Computations,
Third Edition,
Johns Hopkins, 1996,
ISBN: 0-8018-4513-X,
LC: QA188.G65.
-
Gene Golub, James Wilkinson,
Ill-conditioned eigensystems and the computation of the Jordan
canonical form,
SIAM Review,
Volume 18, Number 4, October 1976, pages 578-619.
-
MJC Gover,
The explicit inverse of factorial Hankel matrices,
Department of Mathematics, University of Bradford, 1993.
-
Ronald Graham, Neil Sloane,
Anti-Hadamard Matrices,
Linear Algebra and Applications,
Volume 62, November 1984, pages 113-137.
-
Joseph Grcar,
Operator coefficient methods for linear equations,
Technical Report SAND89-8691,
Sandia National Laboratories,
Albuquerque, New Mexico, 1989.
-
Robert Gregory, David Karney,
A Collection of Matrices for Testing Computational Algorithms,
Wiley, 1969,
ISBN: 0882756494,
LC: QA263.G68.
-
Ernst Hairer, Syvert Norsett, Gerhard Wanner,
Solving Ordinary Differential Equations I: Nonstiff Problems,
Springer, 1987,
ISBN: 3540566708,
LC: QA372.H16.
-
Per Hansen, Tony Chan,
FORTRAN Subroutines for General Toeplitz Systems,
ACM Transactions on Mathematical Software,
Volume 18, Number 3, September 1992, pages 256-273.
-
Harry Harman,
Modern Factor Analysis,
Third Edition,
The University of Chicago Press, 1976,
ISBN: 0226316521,
LC: QA276.H38.
-
John Herndon,
Algorithm 52:
A Set of Test Matrices,
Communications of the ACM,
Volume 4, Number 4, April 1961, page 180.
-
Nicholas Higham,
A survey of condition number estimation for triangular matrices,
SIAM Review,
Volume 29, Number 4, December 1987, pages 575-596.
-
Nicholas Higham,
Accuracy and Stability of Numerical Algorithms,
SIAM, 1996,
ISBN: 0898715210,
LC: QA297.H53.
-
Nicholas Higham,
Algorithm 694:
A Collection of Test Matrices in MATLAB,
ACM Transactions on Mathematical Software,
Volume 17, Number 3, September 1991, pages 289-305.
-
Nicholas Higham,
Stability analysis of algorithms for solving confluent
Vandermonde-like systems,
SIAM Journal on Matrix Analysis and Applications,
Volume 11, Number 1, January 1990, pages 23-41.
-
Nicholas Higham, Desmond Higham,
Large growth factors in Gaussian elimination with pivoting,
SIAM Journal on Matrix Analysis and Applications,
Volume 10, Number 2, April 1989, pages 155-164.
-
John Holte,
Carries, Combinatorics, and an Amazing Matrix,
The American Mathematical Monthly,
Volume 104, Number 2, February 1997, pages 138-149.
-
Roger Horn, Charles Johnson,
Matrix Analysis,
Cambridge, 1985,
ISBN: 0-521-38632-2,
LC: QA188.H66.
-
Alston Householder, John Carpenter,
The singular values of involutory and of idempotent matrices,
Numerische Mathematik,
Volume 5, Number 1, December 1963, pages 234-237.
-
Lawrence Huber, Jacqueline Meulman, Willem Heiser,
Two Purposes for Matrix Factorization: A Historical Appraisal,
SIAM Review,
Volume 41, Number 1, March 1999, pages 68-82.
-
William Kahan,
Numerical Linear Algebra,
Canadian Mathematical Bulletin,
Volume 9, 1966, pages 757-801.
-
Sam Karlin,
Total Positivity, Volume 1,
Stanford University Press, 1968,
ISBN: 0804703140,
LC: QA355.K33.
-
Charles Kenney, Alan Laub,
Controllability and stability radii for companion form systems,
Math. Control Signals Systems,
Volume 1, 1988, pages 239-256.
-
David Kershaw,
The Incomplete Cholesky-Conjugate Gradient Method for the Iterative
Solution of Systems of Linear Equations,
Journal of Computational Physics,
Volume 26, Number 1, January 1978, pages 43-65.
-
Donald Knuth,
The Art of Computer Programming,
Volume 1, Fundamental Algorithms,
Third Edition
Addison-Wesley, 1997,
ISBN: 0201896834,
LC: QA76.6.K64.
-
Maurice Kraitchik,
Mathematical Recreations,
Norton, 1942,
LC: QA95.K72.
-
Henry Lancaster,
The Helmert Matrices,
American Mathematical Monthly,
Volume 72, Number 1, January 1965, pages 4-12.
-
Peter Lauchli,
Jordan-Elimination und Ausgleichung nach kleinsten Quadraten,
(Jordan elimination and smoothing by least squares),
Numerische Mathematik,
Volume 3, Number 1, December 1961, pages 226-240.
-
Jon Lee,
Hoffman's Circle Untangled,
SIAM Review,
Volume 39, Number 1, March 1997, pages 98-105.
-
Wim Lenferink, Marc Spijker,
On the use of stability regions in the numerical analysis of
initial value problems,
Mathematics of Computation,
Volume 57, Number 195, July 1991, pages 221-237.
-
M Lietzke, R Stoughton, Marjorie Lietzke,
A Comparison of Seeral Method for Inverting Large Symmetric
Positive Definite Matrics,
Mathematics of Computation
Volume 18, Number 87, pages 449-456.
-
Max Lotkin,
A set of test matrices,
Mathematics Tables and Other Aids to Computation,
Volume 9, 1955, pages 153-161.
-
Roger Martin, G Peters, James Wilkinson,
HQR, The QR Algorithm for Real Hessenberg Matrices,
Numerische Mathematik,
Volume 14, Number 3, February 1970, pages 219-231.
-
Roger Martin, James Wilkinson,
Similarity Reduction of a General Matrix to Hessenberg Form:
ELMHES,
Numerische Mathematik,
Volume 12, Number 5, December 1968, pages 349-368.
-
John McCarthy,
Pick's Theorem: What's the Big Deal?
American Mathematical Monthly,
Volume 110, Number 1, January 2003, pages 36-45.
-
Noel Nachtigal, Lothar Reichel, Lloyd Trefethen,
A hybrid GMRES algorithm for nonsymmetric linear systems,
SIAM Journal on Matrix Analysis and Applications,
Volume 13, Number 3, June 1992, pages 796-825.
-
John Nash,
Compact Numerical Methods for Computers: Linear Algebra and
Function Minimisation,
Second Edition,
Taylor & Francis, 1990,
ISBN: 085274319X,
LC: QA184.N37.
-
Morris Newman, John Todd,
The evaluation of matrix inversion programs,
Journal of the Society for Industrial and Applied Mathematics,
Volume 6, Number 4, 1958, pages 466-476.
-
Albert Nijenhuis, Herbert Wilf,
Combinatorial Algorithms for Computers and Calculators,
Second Edition,
Academic Press, 1978,
ISBN: 0-12-519260-6,
LC: QA164.N54.
-
Alexander Ostrowski,
On the spectrum of a one-parametric family of matrices,
Journal fuer Reine und Angewandte Mathematik,
Volume 193, Numbers 3/4, 1954, pages 143-160.
-
Seymour Parter,
On the distribution of the singular values of Toeplitz matrices,
Linear Algebra and Applications,
Volume 80, August 1986, pages 115-130.
-
ML Pei,
A test matrix for inversion procedures,
Communications of the ACM,
Volume 5, Number 10, October 1962, page 508.
-
Charles Pinter,
A Book of Abstract Algebra,
Second Edition,
McGraw Hill, 2003,
ISBN: 0072943505,
LC: QA162.P56.
-
William Pratt,
Digital Image Processing,
Second Edition,
Wiley, 1991,
ISBN13: 978-0471857662,
LC: TA1632.P7.
-
Lothar Reichel, Lloyd Trefethen,
Eigenvalues and pseudo-eigenvalues of Toeplitz matrices,
Linear Algebra and Its Applications,
Volume 162-164, February 1992, pages 153-185.
-
Friedrich Roesler,
Riemann's hypothesis as an eigenvalue problem,
Linear Algebra and Its Applications,
Volume 81, September 1986, pages 153-198.
-
Daniel Rutherford,
Some continuant determinants arising in physics and chemistry II,
Proceedings of the Royal Society Edinburgh,
Volume 63, A, 1952, pages 232-241.
-
Heinz Rutishauser,
On test matrices,
Programmation en Mathematiques Numeriques,
Centre National de la Recherche Scientifique,
1966, pages 349-365.
-
Herbert Ryser,
Combinatorial Mathematics,
Mathematical Association of America, 1963,
ISBN: 0883850141,
LC: QA165.R95.
-
Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
Matrix Eigensystem Routines, EISPACK Guide,
Lecture Notes in Computer Science, Volume 6,
Springer, 1976,
ISBN13: 978-3540075462,
LC: QA193.M37.
-
Dennis Stanton, Dennis White,
Constructive Combinatorics,
Springer, 1986,
ISBN: 0387963472,
LC: QA164.S79.
-
Pete Stewart,
Efficient Generation of Random Orthogonal Matrices With an Application
to Condition Estimators,
SIAM Journal on Numerical Analysis,
Volume 17, Number 3, June 1980, pages 403-409.
-
Pete Stewart,
Introduction to Matrix Computations,
Academic Press, 1973.
-
Douglas Sweet,
The use of pivoting to improve the numerical performance of
Toeplitz solvers,
In "Advanced Algorithms and Architectures for Signal Processing",
Edited by J M Speiser,
Proceedings SPIE 696, 1986, pages 8-18.
-
Gabor Szego,
Solution to problem 3705,
American Mathematical Monthly,
Volume 43, Number 4, 1936, pages 246-259
-
Olga Taussky, John Todd,
Another look at a matrix of Mark Kac,
Linear Algebra and Its Applications,
Volume 150, May 1991, pages 341-360.
-
Olga Taussky, Marvin Marcus,
Eigenvalues of finite matrices,
in Survey of Numerical Analysis,
edited by John Todd,
McGraw-Hill, 1962,
LC: QA297.T6.
-
John Todd,
Basic Numerical Mathematics,
Volume 2: Numerical Algebra,
Birkhauser, 1980,
ISBN: 0817608117,
LC: QA297.T58.
-
Lloyd Trefethen,
Spectral Methods in MATLAB,
SIAM, 2000,
ISBN: 0898714656,
LC: QA377.T65.
-
Lloyd Trefethen, David Bau,
Numerical Linear Algebra,
SIAM, 1997,
ISBN: 0-89871-361-7,
LC: QA184.T74.
-
Lloyd Trefethen,
Pseudospectra of matrices,
in Numerical Analysis 1991,
Proceedings of the 14th Dundee Conference,
DF Griffiths and GA Watson, editors,
Pitman Research Notes in Mathematics, volume 260,
Longman Scientific and Technical, Essex, UK, 1992, pages 234-266.
-
William Trench,
Numerical solution of the eigenvalue problem for Hermitian
Toeplitz matrices,
SIAM Journal on Matrix Analysis and Applications,
Volume 10, Number 2, April 1989, pages 135-146.
-
HW Turnbull,
The Theory of Determinants, Matrices, and Invariants,
Blackie, 1929.
-
Evgeny Tyrtyshnikov,
Cauchy-Toeplitz matrices and some applications,
Linear Algebra and Applications,
Volume 149, 15 April 1991, pages 1-18.
-
James Varah,
A generalization of the Frank matrix,
SIAM Journal on Scientific and Statistical Computing,
Volume 7, 1986, pages 835-839.
-
James Varah,
The Prolate Matrix,
Linear Algebra and Applications,
Volume 187, 1993, pages 269-278.
-
Andrew Wathen,
Realistic eigenvalue bounds for the Galerkin mass matrix,
IMA Journal of Numerical Analysis,
Volume 7, Number 4, October 1987, pages 449-457
-
Eric Weisstein,
CRC Concise Encyclopedia of Mathematics,
CRC Press, 2002,
Second edition,
ISBN: 1584883472,
LC: QA5.W45
-
Joan Westlake,
A Handbook of Numerical Matrix Inversion and Solution of
Linear Equations,
John Wiley, 1968,
ISBN13: 978-0471936756,
LC: QA263.W47.
-
James Wilkinson,
Error Analysis of Direct Methods of Matrix Inversion,
Journal of the ACM,
Volume 8, Number 3, July 1961, pages 281-330.
-
James Wilkinson,
Error analysis of floating-point computation,
Numerische Mathematik,
Volume 2, 1960, pages 319-340.
-
James Wilkinson,
Rounding Errors in Algebraic Processes,
Prentice Hall, 1963,
ISBN: 0-486-67999-3,
LC: QA76.5.W53.
-
James Wilkinson,
The Algebraic Eigenvalue Problem,
Oxford University Press, 1988,
ISBN: 0198534183,
LC: QA218.W5.
-
James Wilkinson, Christian Reinsch,
Handbook for Automatic Computation,
Volume II, Linear Algebra, Part 2,
Springer, 1971,
ISBN: 0387054146,
LC: QA251.W67.
-
Gerhard Zielke,
Testmatrizen mit maximaler Konditionszahl,
(Test matrices with maximal condition number),
Computing,
Volume 13, Number 1, March 1974, pages 33-54.
-
Daniel Zwillinger, Steven Kokoska,
Standard Probability and Statistical Tables,
CRC Press, 2000,
ISBN: 1-58488-059-7,
LC: QA273.3.Z95.
Source Code:
-
aegerter.m
returns the AEGERTER matrix.
-
aegerter_condition.m
returns the L1 condition number of the AEGERTER matrix.
-
aegerter_determinant.m
returns the determinant of the AEGERTER matrix.
-
aegerter_eigenvalues.m
returns the eigenvalues of the AEGERTER matrix.
-
aegerter_inverse.m
returns the inverse of the AEGERTER matrix.
-
anticirculant.m
returns the ANTICIRCULANT matrix.
-
anticirculant_determinant.m
returns the determinant of the ANTICIRCULANT matrix.
-
antihadamard.m
returns an approximate "Anti-Hadamard" matrix.
-
antihadamard_determinant.m
returns the determinant of the ANTIHADAMARD matrix.
-
antisymm_random.m
returns a random antisymmetric matrix.
-
archimedes.m
returns the 7 by 8 Archimedes matrix.
-
archimedes_null.m
returns a null vector for the Archimedes matrix.
-
bab.m
returns the BAB matrix.
-
bab_condition.m
returns the L1 condition number of the BAB matrix.
-
bab_determinant.m
returns the determinant of the BAB matrix.
-
bab_eigenvalues.m
returns the eigenvalues of the BAB matrix.
-
bab_inverse.m
returns the inverse of the BAB matrix.
-
bernstein_matrix.m,
returns the BERNSTEIN matrix.
-
bernstein_matrix_inverse.m,
returns the inverse of the BERNSTEIN matrix.
-
bimarkov_random.m
returns a random biMarkov or doubly stochastic matrix.
-
bis.m
returns the BIS matrix.
-
bis_determinant.m
returns the determinant of the BIS matrix.
-
bis_eigenvalues.m
returns the eigenvalues of the BIS matrix.
-
bis_inverse.m
returns the inverse of the BIS matrix.
-
bodewig.m
returns the BODEWIG matrix.
-
bodewig_condition.m
returns the L1 condition of the BODEWIG matrix.
-
bodewig_determinant.m
returns the determinant of the BODEWIG matrix.
-
bodewig_eigenvalues.m
returns the eigenvalues of the BODEWIG matrix.
-
bodewig_inverse.m
returns the inverse of the BODEWIG matrix.
-
bodewig_plu.m
returns the PLU factors of the BODEWIG matrix.
-
bodewig_rhs.m
returns the right hand side of the BODEWIG matrix.
-
bodewig_right.m
returns the right eigenvectors of the BODEWIG matrix.
-
bodewig_solution.m
returns the solution of the BODEWIG matrix.
-
boothroyd.m
returns the Boothroyd matrix.
-
boothroyd_determinant.m
returns the determinant of the BOOTHROYD matrix.
-
boothroyd_inverse.m
returns the inverse of the BOOTHROYD matrix.
-
borderband.m
returns a border-banded matrix.
-
borderband_determinant.m
returns the determinant of the border-banded matrix.
-
borderband_inverse.m
returns the inverse of the border-banded matrix.
-
borderband_plu.m
returns the P*L*U factors of the BORDERBAND matrix.
-
c8_i.m
returns the value of the imaginary unit, i.
-
c8_le_l2.m
:= X <= Y for complex values, and the L2 norm.
-
c8_normal_01.m
returns a unit pseudonormal C8.
-
c8_one.m
returns the value of complex 1.
-
c8_swap.m
swaps two complex values.
-
c8_uniform_01.m
returns a unit pseudorandom C8.
-
c8_zero.m
returns the value of complex 0.
-
c8mat_house.m
constructs a complex Householder elementary reflector matrix.
-
c8mat_house_axh.m
computes A*H where H is a compact Householder matrix.
-
c8mat_house_form.m
constructs a Householder matrix from its compact form.
-
c8mat_identity.m
sets the square matrix A to the identity.
-
c8mat_indicator.m,
returns the C8MAT indicator matrix.
-
c8mat_is_column_orthogonal.m
checks if a complex matrix is column orthogonal.
-
c8mat_is_hermitian.m
checks if a complex matrix is hermitian.
-
c8mat_is_inverse.m
determines if one matrix is the inverse of another.
-
c8mat_is_row_orthogonal.m
checks if a complex matrix is row orthogonal.
-
c8mat_is_symmetric.m
checks a complex matrix for symmetry.
-
c8mat_is_unit_column.m
checks whether A has columns of unit Euclidean norm.
-
c8mat_is_unit_unit_row.m
checks whether A has rows of unit Euclidean norm.
-
c8mat_is_unitary.m
checks whether a complex matrix is unitary.
-
c8mat_norm_fro.m
returns the Frobenius norm of an M by N matrix.
-
c8mat_print.m
prints a complex matrix, with an optional title.
-
c8mat_print_some.m
prints some of a complex matrix, with an optional title.
-
c8mat_uniform_01.m
returns a unit pseudorandom C8MAT.
-
c8vec_house_column.m
defines a Householder premultiplier that "packs" a column.
-
c8vec_norm_l2.m
returns the L2 norm of a complex vector.
-
c8vec_print.m
prints a complex vector, with an optional title.
-
c8vec_print_some.m
prints some of a complex vector.
-
c8vec_sort_a2.m
ascending sorts a complex array by L2 norm.
-
c8vec_uniform_01.m
returns a unit pseudorandom C8VEC.
-
c8vec_unity.m
returns the N roots of unity.
-
carry.m
returns the CARRY matrix.
-
carry_determinant.m
returns the determinant of the CARRY matrix.
-
carry_eigenvalues.m
returns the eigenvalues of the CARRY matrix.
-
carry_inverse.m
returns the inverse of the CARRY matrix.
-
carry_left.m
returns the left eigenvectors of the CARRY matrix.
-
carry_right.m
returns the right eigenvectors of the CARRY matrix.
-
cauchy.m
returns the Cauchy matrix.
-
cauchy_determinant.m
returns the determinant of the Cauchy matrix.
-
cauchy_inverse.m
returns the inverse of the Cauchy matrix.
-
cheby_diff1.m
returns the Chebyshev Differentiation matrix.
-
cheby_diff1_null.m
returns the Chebyshev Differentiation matrix.
-
cheby_t.m
returns the Chebyshev T matrix.
-
cheby_t_determinant.m
returns the determinant of the Chebyshev T matrix.
-
cheby_t_inverse.m
returns the inverse of the Chebyshev T matrix.
-
cheby_u.m
returns the CHEBY_U matrix.
-
cheby_u_determinant.m
returns the determinant of the CHEBY_U matrix.
-
cheby_u_inverse.m
returns the inverse of the CHEBY_U matrix.
-
cheby_u_polynomial.m
evaluates the Chebyshev polynomials of the second kind.
-
cheby_van1.m
returns the CHEBY_VAN1 matrix.
-
cheby_van2.m
returns the CHEBY_VAN2 matrix.
-
cheby_van2_determinant.m
returns the determinant of the CHEBY_VAN2 matrix.
-
cheby_van2_inverse.m
returns the inverse of the CHEBY_VAN2 matrix.
-
cheby_van3.m
returns the CHEBY_VAN3 matrix.
-
cheby_van3_determinant.m
inverts the determinant of the CHEBY_VAN3 marix.
-
cheby_van3_inverse.m
inverts the inverse of the CHEBY_VAN3 marix.
-
chow.m
returns the CHOW matrix.
-
chow_determinant.m
returns the determinant of the CHOW matrix.
-
chow_eigenvalues.m
returns the eigenvalues of the CHOW matrix.
-
chow_inverse.m
returns the inverse of the CHOW matrix.
-
chow_left.m
returns the left eigenvector matrix for the CHOW matrix.
-
chow_right.m
returns the right eigenvector matrix for the CHOW matrix.
-
circulant.m
returns the CIRCULANT matrix.
-
circulant_determinant.m
returns the determinant of the CIRCULANT matrix.
-
circulant_eigenvalues.m
returns the eigenvalues of the CIRCULANT matrix.
-
circulant_inverse.m
returns the inverse of the CIRCULANT matrix.
-
circulant2.m
returns the CIRCULANT2 matrix.
-
circulant2_determinant.m
returns the determinant of the CIRCULANT2 matrix.
-
circulant2_eigenvalues.m
returns the eigenvalues of the CIRCULANT2 matrix.
-
circulant2_inverse.m
returns the inverse of the CIRCUlANT2 matrix.
-
clement1.m
returns the CLEMENT1 matrix.
-
clement1_determinant.m
returns the determinant of the CLEMENT1 matrix.
-
clement1_eigenvalues.m
returns the eigenvalues of the CLEMENT1 matrix.
-
clement1_inverse.m
returns the inverse of the CLEMENT1 matrix.
-
clement2.m
returns the CLEMENT2 matrix.
-
clement2__determinant.m
returns the determinant of the CLEMENT2 matrix.
-
clement2_eigenvalues.m
returns the eigenvalues of the CLEMENT2 matrix.
-
clement2_inverse.m
returns the inverse of the CLEMENT2 matrix.
-
clement3.m
returns the CLEMENT3 matrix.
-
clement3_determinant.m
returns the determinant of the CLEMENT3 matrix.
-
clement3_inverse.m
returns the inverse of the CLEMENT3 matrix.
-
comb.m
computes the combinatorial coefficient C(N,K).
-
combin.m
returns the COMBIN matrix.
-
combinant_condition.m
returns the condition of the COMBIN matrix.
-
combinant_determinant.m
returns the determinant of the COMBIN matrix.
-
combin_eigenvalues.m
returns the eigenvalues of the COMBIN matrix.
-
combin_inverse.m
returns the inverse of the COMBIN matrix A.
-
combin_right.m
returns the right eigenvectors of the COMBIN matrix.
-
companion.m
returns the COMPANION matrix.
-
companion_determinant.m
returns the determinant of the COMPANION matrix.
-
companion_inverse.m
returns the inverse of the COMPANION matrix.
-
complex3.m
returns the COMPLEX3 matrix.
-
complex3_inverse.m
returns the inverse of the COMPLEX3 matrix.
-
complex_i.m
returns a 2 by 2 matrix that behaves like the imaginary unit.
-
complex_i_determinant.m
returns the determinant of the COMPLEX_I matrix.
-
complex_i_inverse.m
returns the inverse of the COMPLEX_I matrix.
-
conex1.m
returns a 4 by 4 LINPACK counterexample matrix.
-
conex1_determinant.m
returns the determinant of the CONEX1 matrix.
-
conex1_inverse.m
returns the inverse of the CONEX1 matrix.
-
conex2.m
returns a 3 by 3 LINPACK condition number counterexample.
-
conex2_determinant.m
returns the determinant of the CONEX2 matrix.
-
conex2_inverse.m
returns the inverse of the CONEX2 matrix.
-
conex3.m
returns a LINPACK condition number counterexample.
-
conex3_determinant.m
returns the determinant of the CONEX3 matrix.
-
conex3_inverse.m
returns the inverse of the CONEX3 matrix.
-
conex4.m
returns a 4 by 4 condition number example.
-
conex4_inverse.m
returns the inverse of the CONEX4 matrix.
-
conference.m
returns the CONFERENCE matrix.
-
conference_determinant.m
returns the determinant of the CONFERENCE matrix.
-
conference_inverse.m
returns the inverse of the CONFERENCE matrix.
-
covar.m
returns the covariance matrix for a square nonsingular matrix.
-
covar2.m
returns the covariance matrix for a rectangular matrix.
-
creation.m
returns the CREATION matrix.
-
creation_determinant.m
returns the determinant of the CREATION matrix.
-
creation_null.m
returns a null vector of the CREATION matrix.
-
cycol_random.m
returns the K-cyclical column matrix.
-
daub2.m
returns the DAUB2 matrix.
-
daub2_determinant.m
returns the determinant of the DAUB2 matrix.
-
daub2_inverse.m
returns the inverse of the DAUB2 matrix.
-
daub4.m
returns the DAUB4 matrix.
-
daub4_determinant.m
returns the determinant of the DAUB4 matrix.
-
daub4_inverse.m
returns the inverse of the DAUB4 matrix.
-
daub6.m
returns the DAUB6 matrix.
-
daub6_determinant.m
returns the determinant of the DAUB6 matrix.
-
daub6_inverse.m
returns the inverse of the DAUB6 matrix.
-
daub8.m
returns the DAUB8 matrix.
-
daub8_determinant.m
returns the determinant of the DAUB8 matrix.
-
daub8_inverse.m
returns the inverse of the DAUB8 matrix.
-
daub10.m
returns the DAUB10 matrix.
-
daub10_determinant.m
returns the determinant of the DAUB10 matrix.
-
daub10_inverse.m
returns the inverse of the DAUB10 matrix.
-
daub12.m
returns the DAUB12 matrix.
-
daub12_determinant.m
returns the determinant of the DAUB12 matrix.
-
daub12_inverse.m
returns the inverse of the DAUB12 matrix.
-
diagonal.m
returns the DIAGONAL matrix.
-
diagonal_determinant.m
returns the determinant of the DIAGONAL matrix.
-
diagonal_eigenvalues.m
returns the eigenvalues of the DIAGONAL matrix.
-
diagonal_inverse.m
returns the inverse of the DIAGONAL matrix.
-
dif1.m
returns the DIF1 matrix.
-
dif1_determinant.m
determinant of the DIF1 matrix.
-
dif1_eigenvalues.m
eigenvalues of the DIF1 matrix.
-
dif1_null.m
returns a null vector of the DIF1 matrix.
-
dif1cyclic.m
returns the cyclic first difference matrix.
-
dif1cyclic_determinant.m
determinant of the DIF1CYCLIC matrix.
-
dif1cyclic_null.m
returns a null vector of the cyclic first difference matrix.
-
dif2.m
returns the DIF2 matrix.
-
dif2_cholesky.m
returns the Cholesky factor of the DIF2 matrix.
-
dif2_determinant.m
returns the determinant of the DIF2 matrix.
-
dif2_eigenvalues.m
returns the eigenvalues of the DIF2 matrix.
-
dif2_inverse.m
returns the inverse of the DIF2 matrix.
-
dif2_plu.m
returns the PLU factors of the DIF2 matrix.
-
dif2_rhs.m
returns the right hand side of the DIF2 matrix.
-
dif2_right.m
returns the right eigenvectors of the DIF2 matrix.
-
dif2_solution.m
returns the solution of the DIF2 matrix.
-
dif2cyclic.m
returns the cyclic second difference matrix.
-
dif2cyclic_determinant.m
determinant of the cyclic second difference matrix.
-
dif2cyclic_null.m
null vector of the cyclic second difference matrix.
-
dorr.m
returns the DORR matrix.
-
downshift.m
returns the DOWNSHIFT matrix.
-
downshift_determinant.m
returns the determinant of the DOWNSHIFT matrix.
-
downshift_eigenvalues.m
returns the eigenvalues of the DOWNSHIFT matrix.
-
downshift_inverse.m
returns the inverse of the DOWNSHIFT matrix.
-
drmac.m
returns the DRMAC matrix.
-
drmac_inverse.m
returns the inverse of the DRMAC matrix.
-
eberlein.m
returns the EBERLEIN matrix.
-
eberlein_determinant.m
returns the determinant of the EBERLEIN matrix.
-
eberlein_eigenvalues.m
returns the eigenvalues of the EBERLEIN matrix.
-
eberlein_null_left.m
returns a null vector of the EBERLEIN matrix.
-
eulerian.m
returns the EULERIAN matrix.
-
eulerian_determinant.m
returns the determinant of the EULERIAN matrix.
-
eulerian_inverse.m
computes the inverse of the EULERIAN matrix.
-
exchange.m
returns the EXCHANGE matrix.
-
exchange_determinant.m
returns the determinant of the EXCHANGE matrix.
-
exchange_eigenvalues.m
returns the eigenvalues of the EXCHANGE matrix.
-
exchange_inverse.m
returns the inverse of the EXCHANGE matrix.
-
exchange_right.m
returns the right eigenvectors of the EXCHANGE matrix.
-
fibonacci1.m
returns the FIBONACCI1 matrix.
-
fibonacci1_determinant.m
returns the determinant of the FIBONACCI1 matrix.
-
fibonacci1_null.m
returns a null vector of the FIBONACCI1 matrix.
-
fibonacci2.m
returns the FIBONACCI2 matrix.
-
fibonacci2_determinant.m
returns the determinant of the FIBONACCI2 matrix.
-
fibonacci2_eigenvalues.m
returns the eigenvalues of the FIBONACCI2 matrix.
-
fibonacci2_inverse.m
returns the inverse of the FIBONACCI2 matrix.
-
fibonacci3.m
returns the FIBONACCI3 matrix.
-
fibonacci3_determinant.m
returns the determinant of the FIBONACCI3 matrix.
-
fibonacci3_eigenvalues.m
returns the eigenvalues of the FIBONACCI3 matrix.
-
fibonacci3_inverse.m
returns the inverse of the FIBONACCI3 matrix.
-
fiedler.m
returns the FIEDLER matrix.
-
fiedler_determinant.m
returns the determinant of the FIEDLER matrix.
-
fiedler_inverse.m
returns the inverse of the FIEDLER matrix.
-
forsythe.m
returns the FORSYTHE matrix.
-
forsythe_determinant.m
returns the determinant of the FORSYTHE matrix.
-
forsythe_eigenvalues.m
returns the eigenvalues of the FORSYTHE matrix.
-
forsythe_inverse.m
returns the inverse of the FORSYTHE matrix.
-
fourier.m
returns the FOURIER matrix.
-
fourier_determinant.m
returns the determinant of the FOURIER matrix.
-
fourier_eigenvalues.m
returns the eigenvalues of the FOURIER matrix.
-
fourier_inverse.m
returns the inverse of the FOURIER matrix.
-
fourier_cosine.m
returns the FOURIER COSINE matrix.
-
fourier_cosine_determinant.m
returns the determinant of the FOURIER COSINE matrix.
-
fourier_cosine_inverse.m
returns the inverse of the FOURIER COSINE matrix.
-
fourier_sine.m
returns the FOURIER_SINE matrix.
-
fourier_sine_determinant.m
returns the determinant of the FOURIER_SINE matrix.
-
fourier_sine_inverse.m
returns the inverse of the FOURIER_SINE matrix.
-
frank.m
returns the FRANK matrix.
-
frank_determinant.m
returns the determinant of the FRANK matrix.
-
frank_inverse.m
returns the inverse of the FRANK matrix.
-
frank_rhs.m
returns the right hand side of the FRANK matrix.
-
frank_solution.m
returns the solution of the FRANK matrix.
-
gear.m
returns the GEAR matrix.
-
gear_determinant.m
returns the determinant of the GEAR matrix.
-
gear_eigenvalues.m
returns the eigenvalues of the GEAR matrix.
-
gfpp.m
returns the GFPP matrix.
-
gfpp_determinant.m
returns the determinant of the GFPP matrix.
-
gfpp_inverse.m
returns the inverse of the GFPP matrix.
-
gfpp_plu.m
returns the PLU factorization of the GFPP matrix.
-
givens.m
returns the GIVENS matrix.
-
givens_determinant.m
returns the determinant of the GIVENS matrix.
-
givens_eigenvalues.m
returns the eigenvalues of the GIVENS matrix.
-
givens_inverse.m
returns the inverse of the GIVENS matrix.
-
givens_plu.m
returns the PLU factors of the GIVENS matrix.
-
gk316.m
returns a Gregory and Karney test matrix.
-
gk316_determinant.m
returns the determinant of GK316.
-
gk316_eigenvalues.m
returns the eigenvalues of GK316.
-
gk316_inverse.m
returns the inverse of the GK316 matrix.
-
gk323.m
returns a Gregory and Karney test matrix.
-
gk323_determinant.m
returns the determinant of the GK323 matrix.
-
gk323_inverse.m
returns the inverse of the GK323 matrix.
-
gk324.m
returns the GK324 matrix.
-
gk324_determinant.m
returns the determinant of the GK324 matrix.
-
gk324_inverse.m
returns the inverse of the GK324 matrix.
-
grcar.m
returns the GRCAR matrix.
-
hadamard.m
returns the HADAMARD matrix.
-
hamming.m
computes the HAMMING matrix.
-
hankel.m
returns the HANKEL matrix.
-
hanowa.m
returns the HANOWA matrix.
-
hanowa_determinant.m
returns the determinant of the HANOWA matrix.
-
hanowa_eigenvalues.m
returns the eigenvalues of the HANOWA matrix.
-
hanowa_inverse.m
returns the inverse of the HANOWA matrix.
-
harman.m
returns the HARMAN matrix.
-
harman_determinant.m
returns the determinant of the HARMAN matrix.
-
harman_inverse.m
returns the inverse of the HARMAN matrix.
-
hartley.m
returns the HARTLEY matrix.
-
hartley_determinant.m
returns the determinant of the HARTLEY matrix.
-
hartley_inverse.m
returns the inverse of the HARTLEY matrix.
-
helmert.m
returns the HELMERT matrix.
-
helmert_determinant.m
returns the determinant of the HELMERT matrix.
-
helmert_inverse.m
returns the inverse of the HELMERT matrix.
-
helmert2.m
returns the HELMERT2 matrix.
-
helmert2_inverse.m
returns the inverse of the HELMERT2 matrix.
-
hermite.m
returns the HERMITE matrix.
-
hermite_determinant.m
returns the determinant of the HERMITE matrix.
-
hermite_inverse.m
returns the inverse of the HERMITE matrix.
-
hermite_roots.m
returns the roots of a Hermite polynomial.
-
herndon.m
returns the HERNDON matrix.
-
herndon_determinant.m
returns the determinant of the HERNDON matrix.
-
herndon_eigenvalues.m
returns the eigenvalues of the HERNDON matrix.
-
herndon_inverse.m
returns the inverse of the HERNDON matrix.
-
hilbert.m
returns the HILBERT matrix.
-
hilbert_determinant.m
returns the determinant of the HILBERT matrix.
-
hilbert_inverse.m
returns the inverse of the HILBERT matrix.
-
hoffman.m
computes the HOFFMAN matrix.
-
hoffman_optimum.m
returns the Hoffman optimum solution.
-
hoffman_rhs.m
returns the right hand side for the HOFFMAN matrix.
-
householder.m
constructs a HOUSEHOLDER matrix.
-
householder_determinant.m
returns the determinant of a HOUSEHOLDER matrix.
-
householder_eigenvalues.m
returns the eigenvalues of a HOUSEHOLDER matrix.
-
householder_inverse.m
returns the inverse of a HOUSEHOLDER matrix.
-
i4_even.m
returns TRUE if I is even.
-
i4_factor.m
factors an integer into prime factors.
-
i4_is_prime.m
reports whether an integer is prime.
-
i4_log_10.m
returns the integer part of the logarithm base 10 of abs ( X ).
-
i4_modp.m
returns the nonnegative remainder of integer division.
-
i4_odd.m
returns TRUE if I is odd.
-
i4_pochhammer.m
returns the value of ( I * (I+1) * ... * (J-1) * J ).
-
i4_sign.m
returns the sign of an I4.
-
i4_swap.m
switches two integer values.
-
i4_uniform.m
returns a scaled pseudorandom I4.
-
i4_wrap.m
forces an integer to lie between given limits by wrapping.
-
i4mat_print.m
prints an I4MAT.
-
i4mat_print_some.m
prints some of an I4MAT.
-
i4vec_index.m
returns the location of the first occurrence of a given value.
-
i4vec_indicator.m
sets an integer vector to the indicator vector.
-
i4vec_print.m
prints an integer vector, with an optional title.
-
idem_random.m
returns the IDEM_RANDOM matrix.
-
idem_random_determinant.m
returns the determinant of the IDEM_RANDOM matrix.
-
idem_random_eigenvalues.m
returns the eigenvalues of the IDEM_RANDOM matrix.
-
idem_random_right.m
returns the right eigenvectors of the IDEM_RANDOM matrix.
-
identity.m
returns the IDENTITY matrix.
-
identity_determinant.m
returns the determinant of the IDENTITY matrix.
-
identity_eigenvalues.m
returns the eigenvalues of the IDENTITY matrix.
-
identity_inverse.m
returns the inverse of the IDENTITY matrix.
-
identity_left.m
returns the left eigenvectors of the IDENTITY matrix.
-
identity_right.m
returns the right eigenvectors of the IDENTITY matrix.
-
ijfact1.m
returns the IJFACT1 matrix.
-
ijfact1_determinant.m
returns the determinant of the IJFACT1 matrix.
-
ijfact2.m
returns the IFJACT2 factorial matrix.
-
ijfact2_determinant.m
returns the determinant of the IJFACT2 matrix.
-
ill3.m
returns the ILL3 matrix, an ill conditioned 3 by 3 matrix.
-
ill3_determinant.m
returns the determinant of the ILL3 matrix.
-
ill3_eigenvalues.m
returns the eigenvalues of the ILL3 matrix.
-
ill3_inverse.m
returns the inverse of the ILL3 matrix.
-
ill3_right.m
returns the right eigenvectors of the ILL3 matrix.
-
indicator.m
sets the INDICATOR matrix.
-
integration.m
returns the INTEGRATION matrix.
-
integration_determinant.m
returns the determinant of the INTEGRATION matrix.
-
integration_eigenvalues.m
returns the eigenvalues of the INTEGRATION matrix.
-
integration_inverse.m
returns the inverse of the INTEGRATION matrix.
-
invol.m
returns the INVOL matrix.
-
invol_determinant.m
returns the determinant of the INVOL matrix.
-
invol_eigenvalues.m
returns the eigenvalues of the INVOL matrix.
-
invol_inverse.m
returns the inverse of the INVOL matrix.
-
invol_random.m
returns a random involutional matrix.
-
jacobi.m
returns the JACOBI matrix.
-
jacobi_determinant.m
returns the determinant of the JACOBI matrix.
-
jacobi_eigenvalues.m
returns the eigenvalues of the JACOBI matrix.
-
jacobi_iterate.m
applies the Jacobi eigenvalue iteration to a symmetric matrix.
-
jacobi_symbol.m
evaluates the Jacobi symbol (Q/P).
-
jordan.m
returns the JORDAN matrix.
-
jordan_determinant.m
returns the determinant of a JORDAN matrix.
-
jordan_inverse.m
returns the inverse of the JORDAN matrix.
-
kahan.m
returns the KAHAN matrix.
-
kahan_determinant.m
returns the determinant of the KAHAN matrix.
-
kahan_inverse.m
returns the inverse of the KAHAN matrix.
-
kershaw.m
returns the KERSHAW matrix.
-
kershaw_determinant.m
returns the determinant of the KERSHAW matrix.
-
kershaw_eigenvalues.m
returns the eigenvalues of the KERSHAW matrix.
-
kershaw_inverse.m
returns the inverse of the KERSHAW matrix.
-
kershawtri.m
returns the KERSHAWTRI matrix.
-
kershawtri_determinant.m
returns the determinant of the KERSHAWTRI matrix.
-
kershawtri_inverse.m
returns the inverse of the KERSHAWTRI matrix.
-
kms.m
returns the KMS matrix.
-
kms_determinant.m
returns the determinant of the KMS matrix.
-
kms_eigenvalues.m
returns the eigenvalues of the KMS matrix.
-
kms_eigenvalues_theta.m
returns data needed to compute the eigenvalues of the KMS matrix.
-
kms_eigenvalues_theta_f.m
evaluates a function for eigenvalues of the KMS matrix.
-
kms_inverse.m
returns the inverse of the KMS matrix.
-
kms_ldl.m
returns the LDL factorization of the KMS matrix.
-
kms_plu.m
returns the PLU factorization of the KMS matrix.
-
krylov.m
returns a Krylov matrix.
-
ksub_next.m
generates the K subsets of an N set, one at a time.
-
laguerre.m
returns the LAGUERRE matrix.
-
laguerre_determinant.m
returns the determinant of the LAGUERRE matrix.
-
laguerre_inverse.m
returns the inverse of the LAGUERRE matrix.
-
lauchli.m
returns the LAUCHLI matrix.
-
lauchli_null_left.m
returns a left null vector for the LAUCHLI matrix.
-
legendre.m
returns the Legendre polynomial matrix.
-
legendre_inverse.m
returns the inverse of the Legendre polynomial matrix.
-
legendre_symbol.m
evaluates the Legendre symbol (Q/P).
-
legendre_zeros.m
computes the zeros of the Legendre polynomial.
-
lehmer.m
returns the LEHMER matrix.
-
lehmer_inverse.m
returns the inverse of the LEHMER matrix.
-
leslie.m
returns the Leslie population dynamics matrix.
-
leslie_determinant.m
returns the determinant of the LESLIE matrix.
-
lesp.m
returns the LESP matrix.
-
lesp_determinant.m
returns the determinant of the LESP matrix.
-
lietzke.m
returns the LIETZKE matrix.
-
lietzke_determinant.m
returns the determinant of the LIETZKE matrix.
-
lietzke_inverse.m
returns the inverse of the LIETZKE matrix.
-
lights_out.m
returns the "Lights Out" matrix.
-
line_adj.m
returns the line adjacency matrix.
-
line_adj_determinant.m
returns the determinant of the LINE_ADJ matrix.
-
line_adj_null.m
returns a null vector of the LINE_ADJ matrix.
-
line_loop_adj.m
returns the LINE_LOOP_ADJ matrix.
-
line_loop_adj_determinant.m
returns the detereminant of the LINE_LOOP_ADJ matrix.
-
loewner.m
returns the LOEWNER matrix.
-
lotkin.m
returns the LOTKIN matrix.
-
lotkin_determinant.m
returns the determinant of the LOTKIN matrix.
-
lotkin_inverse.m
returns the inverse of the LOTKIN matrix.
-
markov_random.m
returns a random Markov matrix.
-
maxij.m
returns the MAXIJ matrix.
-
maxij_determinant.m
returns the determinant of the MAXIJ matrix.
-
maxij_inverse.m
returns the inverse of the MAXIJ matrix.
-
maxij_plu.m
returns the PLU factors of the MAXIJ matrix.
-
mertens.m
evaluates the Mertens function.
-
milnes.m
returns the MILNES matrix.
-
milnes_determinant.m
returns the determinant of the MILNES matrix.
-
milnes_inverse.m
returns the inverse of the MILNES matrix.
-
minij.m
returns the MINIJ matrix.
-
minij_determinant.m
returns the determinant of the MINIJ matrix.
-
minij_eigenvalues.m
returns the eigenvalues of the MINIJ matrix.
-
minij_inverse.m
returns the inverse of the MINIJ matrix.
-
minij_plu.m
returns the P*L*U factors of the MINIJ matrix.
-
moebius.m
returns the value of MU(N), the Moebius function of N.
-
moler1.m
returns the MOLER1 matrix.
-
moler1_determinant.m
returns the determinant of the MOLER1 matrix.
-
moler1_inverse.m
returns the inverse of the MOLER1 matrix.
-
moler1_plu.m
returns the P*L*U factors of the MOLER1 matrix.
-
moler2.m
returns the MOLER2 matrix.
-
moler2_determinant.m
returns the determinant of the MOLER2 matrix.
-
moler2_eigenvalues.m
returns the eigenvalues of the MOLER2 matrix.
-
moler3.m
returns the MOLER3 matrix.
-
moler3_cholesky.m
returns the Cholesky factor of the MOLER3 matrix.
-
moler3_determinant.m
returns the determinant of the MOLER3 matrix.
-
moler3_inverse.m
returns the inverse of the MOLER3 matrix.
-
moler3_plu.m
returns the PLU factors of the MOLER3 matrix.
-
neumann.m
returns the NEUMANN matrix.
-
neumann_determinant.m
returns the determinant of the NEUMANN matrix.
-
neumann_null.m
returns a null vector of the NEUMANN matrix.
-
one.m
returns the ONE matrix.
-
one_determinant.m
returns the determinant of the ONE matrix.
-
one_eigenvalues.m
returns the eigenvalues of the ONE matrix.
-
one_null.m
returns a null vector of the ONE matrix.
-
one_right.m
returns the right eigenvectors of the ONE matrix.
-
ortega.m
returns the ORTEGA matrix.
-
ortega_determinant.m
returns the determinant of the ORTEGA matrix.
-
ortega_eigenvalues.m
returns the eigenvalues of the ORTEGA matrix.
-
ortega_inverse.m
returns the inverse of the ORTEGA matrix.
-
ortega_right.m
returns the right eigenvectors of the ORTEGA matrix.
-
orth_random.m
returns the ORTH_RANDOM matrix.
-
orth_random_determinant.m
returns the determinant of the ORTH_RANDOM matrix.
-
orth_symm.m
returns the ORTH_SYMM matrix.
-
orth_symm_determinant.m
returns the determinant of the ORTH_SYMM matrix.
-
orth_symm_eigenvalues.m
returns eigenvalues of the orthogonal symmetric matrix.
-
orth_symm_inverse.m
returns the inverse of the ORTH_SYMM matrix.
-
oto.m
returns the OTO matrix.
-
oto_determinant.m
returns the determinant of the OTO matrix.
-
oto_eigenvalues.m
returns the eigenvalues of the OTO matrix.
-
oto_inverse.m
returns the inverse of the OTO matrix.
-
oto_plu.m
returns the P*L*U factors of the OTO matrix.
-
oto_right.m
returns the right eigenvectors of the OTO matrix.
-
parlett.m
returns the PARLETT matrix.
-
parlett_eigenvalues.m
returns the eigenvalues of the PARLETT matrix.
-
parter.m
returns the PARTER matrix.
-
parter_determinant.m
returns the determinant of the PARTER matrix.
-
parter_inverse.m
returns the inverse of the PARTER matrix.
-
pascal1.m
returns the PASCAL1 matrix.
-
pascal1_determinant.m
returns the determinant of the PASCAL1 matrix.
-
pascal1_eigenvalues.m
returns eigenvalues of the PASCAL1 matrix.
-
pascal1_inverse.m
returns the inverse of the PASCAL1 matrix.
-
pascal2.m
returns the PASCAL2 matrix.
-
pascal2_cholesky.m
returns the Cholesky factor of the PASCAL2 matrix.
-
pascal2_determinant.m
returns the determinant of the PASCAL2 matrix.
-
pascal2_inverse.m
returns the inverse of the PASCAL2 matrix.
-
pascal2_plu.m
returns the P*L*U factors of the PASCAL2 matrix.
-
pascal3.m
returns the PASCAL3 matrix.
-
pascal3_determinant.m
returns the determinant of the PASCAL3 matrix.
-
pascal3_inverse.m
returns the inverse of the PASCAL3 matrix.
-
pds_random.m
returns the PDS_RANDOM matrix.
-
pds_random_determinant.m
returns the determinant of the PDS_RANDOM matrix.
-
pds_random_eigenvalues.m
returns the eigenvalues of the PDS_RANDOM matrix.
-
pds_random_inverse.m
returns the inverse of the PDS_RANDOM matrix.
-
pds_random_inverse.m
returns the right eigenvectors of the PDS_RANDOM matrix.
-
pei.m
returns the PEI matrix.
-
pei_determinant.m
returns the determinant of the PEI matrix.
-
pei_eigenvalues.m
returns the eigenvalues of the PEI matrix.
-
pei_inverse.m
returns the inverse of the PEI matrix.
-
pei_right.m
returns the (right) eigenvectors of the PEI matrix.
-
perm_check.m
checks that a vector represents a permutation.
-
perm_inverse.m
checks that a vector represents a permutation.
-
perm_mat_to_vec.m
converts a permutation from matrix to vector form.
-
perm_sign.m
returns the sign of a permutation.
-
perm_vec_to_mat.m
converts a permutation from vector to matrix form.
-
permutation_determinant.m
returns the determinant of a permutation matrix.
-
permutation_inverse.m
returns the inverse of a permutation matrix.
-
permutation_random.m
returns a random permutation matrix.
-
permutation_random_determinant.m
returns the determinant of a random permutation matrix.
-
permutation_random_inverse.m
returns the inverse of a random permutation matrix.
-
pick.m
returns the PICK matrix.
-
plu.m
returns the PLU matrix, a matrix with known P, L and U Gauss factors.
-
plu_determinant.m
returns the determinant of the PLU matrix.
-
plu_inverse.m
returns the inverse of the PLU matrix.
-
poisson.m
returns the POISSON matrix.
-
poisson_determinant.m
returns the determinant of the POISSON matrix.
-
poisson_eigenvalues.m
returns the eigenvalues of the POISSON matrix.
-
poisson_rhs.m
returns the right hand side of a linear system involving the POISSON matrix.
-
poisson_solution.m
returns the solution of a linear system involving the POISSON matrix.
-
prime.m
returns any of the first PRIME_MAX prime numbers.
-
prolate.m
returns the PROLATE matrix.
-
propa_no_random.m
returns a random matrix that does not have property A.
-
propa_yes_random.m
returns a random matrix with property A.
-
quaternion_i.m
returns a 4 by 4 matrix that behaves like the quaternion unit I.
-
quaternion_j.m
returns a 4 by 4 matrix that behaves like the quaternion unit J.
-
quaternion_k.m
returns a 4 by 4 matrix that behaves like the quaternion unit K.
-
r8_choose.m,
returns Choose(N,K) as an R8;
-
r8_epsilon.m,
returns the machine precision as an R8;
-
r8_factorial.m,
returns N! as an R8;
-
r8_mop.m,
returns a minus-one-power as an R8;
-
r8_normal_01.m,
returns a unit pseudonormal R8;
-
r8_pi.m,
returns the value of Pi as an R8;
-
r8_sign.m,
returns the sign of an R8.
-
r8_swap.m,
swaps two R8's.
-
r8_uniform.m,
returns a scaled pseudorandom R8;
-
r8_uniform_01.m,
returns a unit pseudorandom R8;
-
r8col_swap.m,
swaps two columns of an R8COL;
-
r8col_to_r8vec.m,
converts an R8COL to a R8VEC;
-
r8mat_cholesky_factor.m,
computes the Cholesky factor of a symmetric real matrix.
-
r8mat_determinant.m,
computes the determinant of a real matrix.
-
r8mat_diag_add_scalar.m,
adds a scalar to the diagonal of a R8MAT;
-
r8mat_diag_get_vector.m,
gets the diagonal of a R8MAT;
-
r8mat_diag_set_scalar.m,
sets the diagonal of a R8MAT to a scalar;
-
r8mat_geco.m,
factors a real matrix and estimates its condition number.
-
r8mat_gedet.m,
computes the determinant of a matrix factored by R8MAT_GEFA.
-
-
r8mat_gefa.m,
factors a general matrix.
-
-
r8mat_geinverse.m,
computes the inverse of a matrix factored by R8MAT_GEFA.
-
-
r8mat_geplu.m,
produces the PLU factors of a real rectangular matrix.
-
-
r8mat_gesl.m,
solves a system factored by R8MAT_GEFA.
-
r8mat_house_axh.m,
computes A*H, where H is a compact Householder matrix;
-
r8mat_house_form.m,
constructs a Householder matrix from its compact form;
-
r8mat_identity.m,
sets a R8MAT to the identity matrix;
-
r8mat_inverse.m,
computes the inverse of an R8MAT;
-
r8mat_is_adjacency.m,
is TRUE if an R8MAT is an adjacency matrix.
-
r8mat_is_anticirculant.m,
is TRUE if an R8MAT is an anticirculant matrix.
-
r8mat_is_antipersymm.m,
is TRUE if an R8MAT is an antipersymmetric matrix.
-
r8mat_is_antisymm.m,
is TRUE if an R8MAT is an antisymmetric matrix.
-
r8mat_is_banded.m,
is TRUE if an R8MAT is a banded matrix.
-
r8mat_is_centrosymm.m,
is TRUE if an R8MAT is a centrosymmetric matrix.
-
r8mat_is_eigen_right.m,
determines the accuracy of a given set of eigenvalues and eigenvectors.
-
r8mat_is_identity.m,
determines if a matrix is the identity matrix.
-
r8mat_is_inverse.m,
determines if one matrix is the inverse of another.
-
r8mat_is_inverse_left.m,
determines if one matrix is the left inverse of another.
-
r8mat_is_inverse_right.m,
determines if one matrix is the right inverse of another.
-
r8mat_is_plu.m,
determines the error in a P*L*U factorization of a matrix.
-
r8mat_is_solution.m,
measures the error in solutions of A*X-B.
-
r8mat_is_symmetric.m,
determines if a matrix is symmetric.
-
r8mat_is_zero_one.m,
is TRUE if an R8MAT is a zero-one matrix.
-
r8mat_norm_eis.m,
computes the EISPACK norm of a matrix;
-
r8mat_norm_fro.m,
computes the Frobenius norm of a R8MAT;
-
r8mat_norm_l1.m,
computes the L1 norm of a R8MAT;
-
r8mat_norm_l2.m,
computes the L2 norm of a R8MAT;
-
r8mat_norm_li.m,
computes the L-infinity norm of a R8MAT;
-
r8mat_plot.m,
plots a R8MAT, with an optional title;
-
r8mat_plot_symbol.m,
returns a symbol for a double precision number;
-
r8mat_poly_char.m,
computes the characteristic polynomial of a R8MAT;
-
r8mat_print.m
prints a matrix.
-
r8mat_print_some.m
prints SOME of a matrix.
-
r8mat_symm_jacobi.m,
applies Jacobi eigenvalue iteration to a symmetric matrix.
-
r8mat_trace.m,
returns the trace of a R8MAT;
-
r8mat_uniform.m,
returns an R8MAT of scaled pseudorandom numbers;
-
r8mat_uniform_01.m,
returns a unit pseudorandom R8MAT;
-
r8poly_order.m,
returns the order of a polynomial.
-
r8poly_print.m,
prints a polynomial;
-
r8row_swap.m,
swaps two rows of an R8ROW.
-
r8row_to_r8vec.m,
converts an R8ROW into an R8VEC.
-
r8vec_house_column.m,
defines a Householder premultiplier that "packs" a column;
-
r8vec_indicator.m,
sets a R8VEC to the indicator vector;
-
r8vec_norm_l2.m,
returns the L2 norm of a R8VEC.
-
r8vec_print.m,
prints a R8VEC;
-
r8vec_uniform.m,
returns a vector of scaled pseudorandom values;
-
r8vec_uniform_01.m,
returns a unit pseudorandom R8VEC.
-
r8vec2_print.m,
prints a pair of R8VEC's;
-
rayleigh.m,
returns the Rayleigh quotient of the matrix A and the vector X.
-
rayleigh2.m,
returns the generalized Rayleigh quotient.
-
rectangle_adj.m,
returns the RECTANGLE_ADJ matrix.
-
rectangle_adj_determinant.m,
returns the determinant of the RECTANGLE_ADJ matrix.
-
redheffer.m,
returns the REDHEFFER matrix.
-
redheffer_determinant.m,
returns the determinant of the REDHEFFER matrix.
-
ref_random.m,
returns the REF_RANDOM matrix, a random row echelon matrix.
-
ref_random.m,
returns the determinant of the REF_RANDOM matrix, a random row echelon matrix.
-
riemann.m,
returns the RIEMANN matrix.
-
ring_adj.m,
returns the RING_ADJ matrix.
-
ring_adj_determinant.m,
returns the determinant of the RING_ADJ matrix.
-
ris.m,
returns the RIS matrix.
-
ris_determinant.m,
returns the determinant of the RIS matrix.
-
ris_inverse.m,
returns the inverse of the RIS matrix.
-
rodman.m,
returns the RODMAN matrix.
-
rodman_determinant.m,
returns the determinant of the RODMAN matrix.
-
rodman_eigenvalues.m,
returns the eigenvalues of the RODMAN matrix.
-
rodman_inverse.m,
returns the inverse of the RODMAN matrix.
-
rodman_right.m
returns the right eigenvectors of the RODMAN matrix.
-
rosser1.m,
returns the ROSSER1 matrix.
-
rosser1_determinant.m,
returns the determinant of the ROSSER1 matrix.
-
rosser1_eigenvalues.m,
returns the eigenvalues of the ROSSER1 matrix.
-
rosser1_null.m,
returns a null vector of the ROSSER1 matrix.
-
rosser1_right.m,
returns the right eigenvectors of the ROSSER1 matrix.
-
routh.m,
returns the ROUTH matrix.
-
routh_determinant.m,
returns the determinant of the ROUTH matrix.
-
rowcolsum_matrix.m,
returns the ROWCOLSUM matrix.
-
rutis1.m,
returns the RUTIS1 matrix.
-
rutis1_determinant.m,
returns the determinant of the RUTIS1 matrix.
-
rutis1_eigenvalues.m,
returns the eigenvalues of the RUTIS1 matrix.
-
rutis1_inverse.m,
returns the inverse of the RUTIS1 matrix.
-
rutis1_right.m,
returns the right eigenvectors of the RUTIS1 matrix.
-
rutis2.m,
returns the RUTIS2 matrix.
-
rutis2_determinant.m,
returns the determinant of the RUTIS2 matrix.
-
rutis2_eigenvalues.m,
returns the eigenvalues of the RUTIS2 matrix.
-
rutis2_inverse.m,
returns the inverse of the RUTIS2 matrix.
-
rutis2_right.m,
returns the right eigenvectors of the RUTIS2 matrix.
-
rutis3.m,
returns the RUTIS3 matrix.
-
rutis3_determinant.m,
returns the determinant of the RUTIS3 matrix.
-
rutis3_eigenvalues.m,
returns the eigenvalues of the RUTIS3 matrix.
-
rutis3_inverse.m,
returns the inverse of the RUTIS3 matrix.
-
rutis3_left.m,
returns the left eigenvectors of the RUTIS3 matrix.
-
rutis3_right.m,
returns the right eigenvectors of the RUTIS3 matrix.
-
rutis4.m,
returns the RUTIS4 matrix.
-
rutis4_determinant.m,
returns the determinant of the RUTIS4 matrix.
-
rutis4_eigenvalues.m,
returns the eigenvalues of the Rutishauser4 matrix.
-
rutis5.m,
returns the RUTIS5 matrix.
-
rutis5_condition.m,
returns the L1 condition of the RUTIS5 matrix.
-
rutis5_determinant.m,
returns the determinant of the RUTIS5 matrix.
-
rutis5_eigenvalues.m,
returns the eigenvalues of the RUTIS5 matrix.
-
rutis5_inverse.m,
returns the inverse of the RUTIS5 matrix.
-
rutis5_right.m,
returns the right eigenvectors of the RUTIS5 matrix.
-
s_len_trim.m
returns the length of a string to the last nonblank.
-
schur_block.m
returns the SCHUR_BLOCK matrix.
-
schur_block_determinant.m
returns the determinant of the SCHUR_BLOCK matrix.
-
schur_block_eigenvalues.m
returns the eigenvalues of the SCHUR_BLOCK matrix.
-
schur_block_inverse.m
returns the inverse of the SCHUR_BLOCK matrix.
-
skew_circulant.m
returns a SKEW_CIRCULANT matrix.
-
skew_circulant_determinant.m
returns the determinant of the SKEW_CIRCULANT matrix.
-
skew_circulant_eigenvalues.m
returns eigenvalues of the SKEW_CIRCULANT matrix.
-
smoke.m
returns the SMOKE matrix.
-
smoke_determinant.m
returns the determinant of the SMOKE matrix.
-
smoke_eigenvalues.m
returns the eigenvalues of the SMOKE matrix.
-
sort_heap_external.m,
externally sorts a list of values into ascending order;
-
spline.m
returns the SPLINE matrix.
-
spline_determinant.m
returns the determinant of the SPLINE matrix.
-
spline_inverse.m
returns the inverse of the SPLINE matrix.
-
stirling.m
returns the STIRLING matrix.
-
stirling_determinant.m
returns the determinant of the STIRLING matrix.
-
stirling_inverse.m
returns the inverse of the STIRLING matrix.
-
stripe.m
returns the STRIPE matrix.
-
sub_by_size_next.m
returns all subsets of an N set, in order of size.
-
sub_random.m
selects a random subset of an N-set.
-
summation.m
returns the SUMMATION matrix.
-
summation_condition.m
returns the L1 condition of the SUMMATION matrix.
-
summation_determinant.m
returns the determinant of the SUMMATION matrix.
-
summation_eigenvalues.m
returns the eigenvalues of the SUMMATION matrix.
-
summation_inverse.m
returns the inverse of the SUMMATION matrix.
-
sweet1.m
returns the SWEET1 matrix.
-
sweet2.m
returns the SWEET2 matrix.
-
sweet3.m
returns the SWEET3 matrix.
-
sweet4.m
returns the SWEET4 matrix.
-
sylvester.m
returns the SYLVESTER matrix.
-
symm_random.m
returns a "random" symmetric matrix with given eigenvalues.
-
symm_random_determinant.m
returns the determinant of the SYMM_RANDOM matrix.
-
timestamp.m
returns the YMDHMS date as a timestamp.
-
toeplitz.m
returns a TOEPLITZ matrix.
-
toeplitz_5diag.m
returns a pentadiagonal Toeplitz matrix.
-
toeplitz_5s.m
returns the TOEPLITZ_5S matrix.
-
toeplitz_5s_eigenvalues.m
returns the eigenvalues of the TOEPLITZ_5S matrix.
-
toeplitz_pds.m
returns a Toeplitz matrix that is positive definite symmetric.
-
tournament_random.m
returns the TOURNAMENT_RANDOM matrix.
-
tournament_random_determinant.m
returns the determinant of the TOURNAMENT_RANDOM matrix.
-
transition_random.m
returns a random transition matrix.
-
trench.m
returns the TRENCH matrix.
-
tri_l1_inverse.m
returns the inverse of a unit lower triangular matrix.
-
tri_u_inverse.m
returns the inverse of an upper triangular matrix.
-
tri_upper.m
returns the TRI_UPPER matrix.
-
tri_upper_condition.m
returns the L1 condition of the TRI_UPPER matrix.
-
tri_upper_determinant.m
returns the determinant of the TRI_UPPER matrix.
-
tri_upper_eigenvalues.m
returns the eigenvalues of the TRI_UPPER matrix.
-
tri_upper_inverse.m
returns the inverse of the TRI_UPPER matrix.
-
tridiagonal_determinant.m
returns the determinant of a tridiagonal matrix.
-
tris.m
returns the TRIS matrix.
-
tris_determinant.m
returns the determinant of the TRIS matrix.
-
tris_eigenvalues.m
returns the eigenvalues of the TRIS matrix.
-
tris_inverse.m
returns the inverse of the TRIS matrix.
-
triv.m
returns the tridiagonal matrix A defined by three vectors.
-
triv_determinant.m
returns the determinant of the TRIV matrix.
-
triv_inverse.m
returns the inverse of the TRIV matrix.
-
triw.m
returns the Wilkinson banded upper triangular matrix.
-
triw_determinant.m
returns the determinant of the TRIW matrix.
-
triw_eigenvalues.m
returns the eigenvalues of the TRIW matrix.
-
triw_inverse.m
sets the inverse of the TRIW matrix.
-
unitary_random.m
returns a random unitary matrix.
-
upshift.m
returns the UPSHIFT matrix.
-
upshift_determinant.m
returns the determinant of the UPSHIFT matrix.
-
upshift_eigenvalues.m
returns the eigenvalues of the UPSHIFT matrix.
-
upshift_inverse.m
returns the inverse of the UPSHIFT matrix.
-
vand1.m
returns the VAND1 matrix.
-
vand1_determinant.m
returns the determinant of the VAND1 matrix.
-
vand1_inverse.m
returns the inverse of the VAND1 matrix.
-
vand2.m
returns the VAND2 matrix.
-
vand2_determinant.m
returns the determinant of the VAND2 matrix.
-
vand2_inverse.m
returns the inverse of the VAND2 matrix.
-
wathen.m
returns the WATHEN matrix.
-
wilk03.m
returns the WILK03 matrix.
-
wilk03_condition.m
returns the condition of the WILK03 matrix.
-
wilk03_determinant.m
returns the determinant of the WILK03 matrix.
-
wilk03_inverse.m
returns the inverse of the WILK03 matrix.
-
wilk03_rhs.m
returns the right hand side of the WILK03 linear system.
-
wilk03_solution.m
returns the solution of the WILK03 linear system.
-
wilk04.m
returns the WILK04 matrix.
-
wilk04_determinant.m
returns the determinant of the WILK04 matrix.
-
wilk04_eigenvalues.m
returns the eigenvalues of the WILK04 matrix.
-
wilk04_rhs.m
returns the right hand side of the WILK04 linear system.
-
wilk04_solution.m
returns the solution of the WILK04 linear system.
-
wilk05.m
returns the WILK05 matrix.
-
wilk05_determinant.m
returns the determinant of the WILK05 matrix.
-
wilk05_inverse.m
returns the determinant of the WILK05 matrix.
-
wilk12.m
returns the WILK12 matrix.
-
wilk12_determinant.m
returns the determinant of the WILK12 matrix.
-
wilk12_eigenvalues.m
returns the eigenvalues of the WILK12 matrix.
-
wilk12_right.m
returns the right eigenvectors of the WILK12 matrix.
-
wilk20.m
returns the WILK20 matrix.
-
wilk21.m
returns the WILK21 matrix.
-
wilk21_determinant.m
returns the determinant of the WILK21 matrix.
-
wilk21_inverse.m
returns the inverse of the WILK21 matrix.
-
wilson.m
returns the WILSON matrix.
-
wilson_condition.m
returns the L1 condition of the WILSON matrix.
-
wilson_determinant.m
returns the determinant of the WILSON matrix.
-
wilson_eigenvalues.m
returns the eigenvalues of the WILSON matrix.
-
wilson_inverse.m
returns the inverse of the WILSON matrix.
-
wilson_plu.m
returns the PLU factors of the WILSON matrix.
-
wilson_rhs.m
returns the WILSON right hand side.
-
wilson_right.m
returns the right eigenvectors of the WILSON matrix.
-
wilson_solution.m
returns the WILSON solution.
-
zero.m
returns the ZERO matrix.
-
zero_determinant.m
returns the determinant of the ZERO matrix.
-
zero_eigenvalues.m
returns the eigenvalues of the ZERO matrix.
-
zero_null.m
returns a null vector of the ZERO matrix.
-
zero_right.m
returns the right eigenvectors of the ZERO matrix.
-
zielke.m
returns the ZIELKE matrix.
Examples and Tests:
You can go up one level to
the MATLAB source codes.
Last revised on 08 April 2012.