QuantLib: a free/open-source library for quantitative finance
Reference manual - version 1.40
Loading...
Searching...
No Matches
BatesEngine Class Reference

Bates model engines based on Fourier transform. More...

#include <ql/pricingengines/vanilla/batesengine.hpp>

Inheritance diagram for BatesEngine:

Public Member Functions

 BatesEngine (const ext::shared_ptr< BatesModel > &model, Size integrationOrder=144)
 BatesEngine (const ext::shared_ptr< BatesModel > &model, Real relTolerance, Size maxEvaluations)
Public Member Functions inherited from AnalyticHestonEngine
 AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, Real relTolerance, Size maxEvaluations)
 AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, Size integrationOrder=144)
 AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, ComplexLogFormula cpxLog, const Integration &itg, Real andersenPiterbargEpsilon=1e-25, Real alpha=-0.5)
void calculate () const override
std::complex< RealchF (const std::complex< Real > &z, Time t) const
std::complex< ReallnChF (const std::complex< Real > &z, Time t) const
Size numberOfEvaluations () const
Real priceVanillaPayoff (const ext::shared_ptr< PlainVanillaPayoff > &payoff, const Date &maturity) const
Real priceVanillaPayoff (const ext::shared_ptr< PlainVanillaPayoff > &payoff, Time maturity) const
Public Member Functions inherited from GenericModelEngine< HestonModel, VanillaOption::arguments, VanillaOption::results >
 GenericModelEngine (Handle< HestonModel > model=Handle< HestonModel >())
Public Member Functions inherited from GenericEngine< VanillaOption::arguments, VanillaOption::results >
PricingEngine::arguments * getArguments () const override
const PricingEngine::results * getResults () const override
void reset () override
void update () override
Public Member Functions inherited from Observable
 Observable (const Observable &)
Observableoperator= (const Observable &)
 Observable (Observable &&)=delete
Observableoperator= (Observable &&)=delete
void notifyObservers ()
Public Member Functions inherited from Observer
 Observer (const Observer &)
Observeroperator= (const Observer &)
std::pair< iterator, bool > registerWith (const ext::shared_ptr< Observable > &)
void registerWithObservables (const ext::shared_ptr< Observer > &)
Size unregisterWith (const ext::shared_ptr< Observable > &)
void unregisterWithAll ()
virtual void deepUpdate ()

Protected Member Functions

std::complex< RealaddOnTerm (Real phi, Time t, Size j) const override

Additional Inherited Members

Public Types inherited from AnalyticHestonEngine
enum  ComplexLogFormula {
  Gatheral , BranchCorrection , AndersenPiterbarg , AndersenPiterbargOptCV ,
  AsymptoticChF , AngledContour , AngledContourNoCV , OptimalCV
}
Public Types inherited from Observer
typedef set_type::iterator iterator
Static Public Member Functions inherited from AnalyticHestonEngine
static void doCalculation (Real riskFreeDiscount, Real dividendDiscount, Real spotPrice, Real strikePrice, Real term, Real kappa, Real theta, Real sigma, Real v0, Real rho, const TypePayoff &type, const Integration &integration, ComplexLogFormula cpxLog, const AnalyticHestonEngine *enginePtr, Real &value, Size &evaluations)
static ComplexLogFormula optimalControlVariate (Time t, Real v0, Real kappa, Real theta, Real sigma, Real rho)
Protected Attributes inherited from GenericModelEngine< HestonModel, VanillaOption::arguments, VanillaOption::results >
Handle< HestonModelmodel_
Protected Attributes inherited from GenericEngine< VanillaOption::arguments, VanillaOption::results >
VanillaOption::arguments arguments_
VanillaOption::results results_

Detailed Description

Bates model engines based on Fourier transform.

this classes price european options under the following processes

  1. Jump-Diffusion with Stochastic Volatility

    \[\begin{array}{rcl} dS(t, S) &=& (r-d-\lambda m) S dt +\sqrt{v} S dW_1 + (e^J - 1) S dN \\ dv(t, S) &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\ dW_1 dW_2 &=& \rho dt \end{array} \]

N is a Poisson process with the intensity \( \lambda \). When a jump occurs the magnitude J has the probability density function \( \omega(J) \).

1.1 Log-Normal Jump Diffusion: BatesEngine

Logarithm of the jump size J is normally distributed

\[\omega(J) = \frac{1}{\sqrt{2\pi \delta^2}} \exp\left[-\frac{(J-\nu)^2}{2\delta^2}\right] \]

1.2 Double-Exponential Jump Diffusion: BatesDoubleExpEngine

The jump size has an asymmetric double exponential distribution

\[\begin{array}{rcl} \omega(J)&=& p\frac{1}{\eta_u}e^{-\frac{1}{\eta_u}J} 1_{J>0} + q\frac{1}{\eta_d}e^{\frac{1}{\eta_d}J} 1_{J<0} \\ p + q &=& 1 \end{array} \]

  1. Stochastic Volatility with Jump Diffusion and Deterministic Jump Intensity

    \[\begin{array}{rcl} dS(t, S) &=& (r-d-\lambda m) S dt +\sqrt{v} S dW_1 + (e^J - 1) S dN \\ dv(t, S) &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\ d\lambda(t) &=& \kappa_\lambda(\theta_\lambda-\lambda) dt \\ dW_1 dW_2 &=& \rho dt \end{array} \]

2.1 Log-Normal Jump Diffusion with Deterministic Jump Intensity BatesDetJumpEngine

2.2 Double-Exponential Jump Diffusion with Deterministic Jump Intensity BatesDoubleExpDetJumpEngine

References:

D. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options, Review of Financial Sudies 9, 69-107.

A. Sepp, Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform (http://math.ut.ee/~spartak/papers/stochjumpvols.pdf)

Tests
the correctness of the returned value is tested by reproducing results available in web/literature, testing against QuantLib's jump diffusion engine and comparison with Black pricing.

Member Function Documentation

◆ addOnTerm()

std::complex< Real > addOnTerm ( Real phi,
Time t,
Size j ) const
overrideprotectedvirtual

Reimplemented from AnalyticHestonEngine.