QuantLib: a free/open-source library for quantitative finance
Reference manual - version 1.40
Loading...
Searching...
No Matches
EndEulerDiscretization Class Reference

Euler end-point discretization for stochastic processes. More...

#include <ql/processes/endeulerdiscretization.hpp>

Inheritance diagram for EndEulerDiscretization:

Public Member Functions

Array drift (const StochasticProcess &, Time t0, const Array &x0, Time dt) const override
Real drift (const StochasticProcess1D &, Time t0, Real x0, Time dt) const override
Matrix diffusion (const StochasticProcess &, Time t0, const Array &x0, Time dt) const override
Real diffusion (const StochasticProcess1D &, Time t0, Real x0, Time dt) const override
Matrix covariance (const StochasticProcess &, Time t0, const Array &x0, Time dt) const override
Real variance (const StochasticProcess1D &, Time t0, Real x0, Time dt) const override

Detailed Description

Euler end-point discretization for stochastic processes.

Member Function Documentation

◆ drift() [1/2]

Array drift ( const StochasticProcess & ,
Time t0,
const Array & x0,
Time dt ) const
overridevirtual

Returns an approximation of the drift defined as \( \mu(t_0 + \Delta t, \mathbf{x}_0) \Delta t \).

Implements StochasticProcess::discretization.

◆ drift() [2/2]

Real drift ( const StochasticProcess1D & ,
Time t0,
Real x0,
Time dt ) const
overridevirtual

Returns an approximation of the drift defined as \( \mu(t_0 + \Delta t, x_0) \Delta t \).

Implements StochasticProcess1D::discretization.

◆ diffusion() [1/2]

Matrix diffusion ( const StochasticProcess & ,
Time t0,
const Array & x0,
Time dt ) const
overridevirtual

Returns an approximation of the diffusion defined as \( \sigma(t_0 + \Delta t, \mathbf{x}_0) \sqrt{\Delta t} \).

Implements StochasticProcess::discretization.

◆ diffusion() [2/2]

Real diffusion ( const StochasticProcess1D & ,
Time t0,
Real x0,
Time dt ) const
overridevirtual

Returns an approximation of the diffusion defined as \( \sigma(t_0 + \Delta t, x_0) \sqrt{\Delta t} \).

Implements StochasticProcess1D::discretization.

◆ covariance()

Matrix covariance ( const StochasticProcess & ,
Time t0,
const Array & x0,
Time dt ) const
overridevirtual

Returns an approximation of the covariance defined as \( \sigma(t_0 + \Delta t, \mathbf{x}_0)^2 \Delta t \).

Implements StochasticProcess::discretization.

◆ variance()

Real variance ( const StochasticProcess1D & ,
Time t0,
Real x0,
Time dt ) const
overridevirtual

Returns an approximation of the variance defined as \( \sigma(t_0 + \Delta t, x_0)^2 \Delta t \).

Implements StochasticProcess1D::discretization.