QuantLib: a free/open-source library for quantitative finance
Reference manual - version 1.40
Loading...
Searching...
No Matches
KlugeExtOUProcess Class Reference

#include <ql/experimental/processes/klugeextouprocess.hpp>

Inheritance diagram for KlugeExtOUProcess:

Public Member Functions

 KlugeExtOUProcess (Real rho, ext::shared_ptr< ExtOUWithJumpsProcess > kluge, ext::shared_ptr< ExtendedOrnsteinUhlenbeckProcess > extOU)
Size size () const override
 returns the number of dimensions of the stochastic process
Size factors () const override
 returns the number of independent factors of the process
Array initialValues () const override
 returns the initial values of the state variables
Array drift (Time t, const Array &x) const override
 returns the drift part of the equation, i.e., \( \mu(t, \mathrm{x}_t) \)
Matrix diffusion (Time t, const Array &x) const override
 returns the diffusion part of the equation, i.e. \( \sigma(t, \mathrm{x}_t) \)
Array evolve (Time t0, const Array &x0, Time dt, const Array &dw) const override
ext::shared_ptr< ExtOUWithJumpsProcessgetKlugeProcess () const
ext::shared_ptr< ExtendedOrnsteinUhlenbeckProcessgetExtOUProcess () const
Real rho () const
Public Member Functions inherited from StochasticProcess
virtual Array expectation (Time t0, const Array &x0, Time dt) const
virtual Matrix stdDeviation (Time t0, const Array &x0, Time dt) const
virtual Matrix covariance (Time t0, const Array &x0, Time dt) const
virtual Array apply (const Array &x0, const Array &dx) const
virtual Time time (const Date &) const
void update () override
Public Member Functions inherited from Observer
 Observer (const Observer &)
Observeroperator= (const Observer &)
std::pair< iterator, bool > registerWith (const ext::shared_ptr< Observable > &)
void registerWithObservables (const ext::shared_ptr< Observer > &)
Size unregisterWith (const ext::shared_ptr< Observable > &)
void unregisterWithAll ()
virtual void deepUpdate ()
Public Member Functions inherited from Observable
 Observable (const Observable &)
Observableoperator= (const Observable &)
 Observable (Observable &&)=delete
Observableoperator= (Observable &&)=delete
void notifyObservers ()

Additional Inherited Members

Public Types inherited from Observer
typedef set_type::iterator iterator
 StochasticProcess (ext::shared_ptr< discretization >)
ext::shared_ptr< discretizationdiscretization_

Detailed Description

This class describes a correlated Kluge - extended Ornstein-Uhlenbeck process governed by

\[\begin{array}{rcl} P_t &=& \exp(p_t + X_t + Y_t) \\ dX_t &=& -\alpha X_tdt + \sigma_x dW_t^x \\ dY_t &=& -\beta Y_{t-}dt + J_tdN_t \\ \omega(J) &=& \eta e^{-\eta J} \\ G_t &=& \exp(g_t + U_t) \\ dU_t &=& -\kappa U_tdt + \sigma_udW_t^u \\ \rho &=& \mathrm{corr} (dW_t^x, dW_t^u) \end{array} \]

References: B. Hambly, S. Howison, T. Kluge, Modelling spikes and pricing swing options in electricity markets, http://people.maths.ox.ac.uk/hambly/PDF/Papers/elec.pdf

Member Function Documentation

◆ size()

Size size ( ) const
overridevirtual

returns the number of dimensions of the stochastic process

Implements StochasticProcess.

◆ factors()

Size factors ( ) const
overridevirtual

returns the number of independent factors of the process

Reimplemented from StochasticProcess.

◆ initialValues()

Array initialValues ( ) const
overridevirtual

returns the initial values of the state variables

Implements StochasticProcess.

◆ drift()

Array drift ( Time t,
const Array & x ) const
overridevirtual

returns the drift part of the equation, i.e., \( \mu(t, \mathrm{x}_t) \)

Implements StochasticProcess.

◆ diffusion()

Matrix diffusion ( Time t,
const Array & x ) const
overridevirtual

returns the diffusion part of the equation, i.e. \( \sigma(t, \mathrm{x}_t) \)

Implements StochasticProcess.

◆ evolve()

Array evolve ( Time t0,
const Array & x0,
Time dt,
const Array & dw ) const
overridevirtual

returns the asset value after a time interval \( \Delta t \) according to the given discretization. By default, it returns

\[E(\mathrm{x}_0,t_0,\Delta t) + S(\mathrm{x}_0,t_0,\Delta t) \cdot \Delta \mathrm{w} \]

where \( E \) is the expectation and \( S \) the standard deviation.

Reimplemented from StochasticProcess.