Exponentiation#
- class sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)[source]#
 The Exponentiation kernel takes one base kernel and a scalar parameter \(p\) and combines them via
\[k_{exp}(X, Y) = k(X, Y) ^p\]Note that the
__pow__magic method is overridden, soExponentiation(RBF(), 2)is equivalent to using the ** operator withRBF() ** 2.Read more in the User Guide.
Added in version 0.18.
- Parameters:
 - kernelKernel
 The base kernel
- exponentfloat
 The exponent for the base kernel
Examples
>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import (RationalQuadratic, ... Exponentiation) >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = Exponentiation(RationalQuadratic(), exponent=2) >>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.419 >>> gpr.predict(X[:1,:], return_std=True) (array([635.5]), array([0.559]))
- __call__(X, Y=None, eval_gradient=False)[source]#
 Return the kernel k(X, Y) and optionally its gradient.
- Parameters:
 - Xarray-like of shape (n_samples_X, n_features) or list of object
 Left argument of the returned kernel k(X, Y)
- Yarray-like of shape (n_samples_Y, n_features) or list of object, default=None
 Right argument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.
- eval_gradientbool, default=False
 Determines whether the gradient with respect to the log of the kernel hyperparameter is computed.
- Returns:
 - Kndarray of shape (n_samples_X, n_samples_Y)
 Kernel k(X, Y)
- K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
 The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when
eval_gradientis True.
- property bounds#
 Returns the log-transformed bounds on the theta.
- Returns:
 - boundsndarray of shape (n_dims, 2)
 The log-transformed bounds on the kernel’s hyperparameters theta
- clone_with_theta(theta)[source]#
 Returns a clone of self with given hyperparameters theta.
- Parameters:
 - thetandarray of shape (n_dims,)
 The hyperparameters
- diag(X)[source]#
 Returns the diagonal of the kernel k(X, X).
The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently since only the diagonal is evaluated.
- Parameters:
 - Xarray-like of shape (n_samples_X, n_features) or list of object
 Argument to the kernel.
- Returns:
 - K_diagndarray of shape (n_samples_X,)
 Diagonal of kernel k(X, X)
- get_params(deep=True)[source]#
 Get parameters of this kernel.
- Parameters:
 - deepbool, default=True
 If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
 - paramsdict
 Parameter names mapped to their values.
- property hyperparameters#
 Returns a list of all hyperparameter.
- property n_dims#
 Returns the number of non-fixed hyperparameters of the kernel.
- property requires_vector_input#
 Returns whether the kernel is defined on discrete structures.
- set_params(**params)[source]#
 Set the parameters of this kernel.
The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter>so that it’s possible to update each component of a nested object.- Returns:
 - self
 
- property theta#
 Returns the (flattened, log-transformed) non-fixed hyperparameters.
Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representation of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales naturally live on a log-scale.
- Returns:
 - thetandarray of shape (n_dims,)
 The non-fixed, log-transformed hyperparameters of the kernel