Performs a within-environment analysis of variance in randomized complete block or alpha-lattice designs and returns values such as Mean Squares, p-values, coefficient of variation, heritability, and accuracy of selection.
Arguments
- .data
- The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s). 
- env
- The name of the column that contains the levels of the environments. The analysis of variance is computed for each level of this factor. 
- gen
- The name of the column that contains the levels of the genotypes. 
- rep
- The name of the column that contains the levels of the replications/blocks. 
- resp
- The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example - resp = c(var1, var2, var3).
- block
- Defaults to - NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. All effects, except the error, are assumed to be fixed.
- verbose
- Logical argument. If - verbose = FALSEthe code will run silently.
Value
A list where each element is the result for one variable containing (1) individual: A tidy tbl_df with the results of the individual analysis of variance with the following column names, and (2) MSRatio: The ratio between the higher and lower residual mean square. The following columns are returned, depending on the experimental design
- For analysis in alpha-lattice designs: - MEAN: The grand mean.
- DFG, DFCR, and DFIB_R, and DFE: The degree of freedom for genotype, complete replicates, incomplete blocks within replicates, and error, respectively.
- MSG, MSCR, MSIB_R: The mean squares for genotype, replicates, incomplete blocks within replicates, and error, respectively.
- FCG, FCR, FCIB_R: The F-calculated for genotype, replicates and incomplete blocks within replicates, respectively.
- PFG, PFCR, PFIB_R: The P-values for genotype, replicates and incomplete blocks within replicates, respectively.
- CV: coefficient of variation.
- h2: broad-sense heritability.
- AS: accuracy of selection (square root of- h2)
 
- For analysis in randomized complete block design: - MEAN: The grand mean.
- DFG, DFB, and DFE: The degree of freedom for genotype blocks, and error, respectively.
- MSG, MSB, and MSE: The mean squares for genotype blocks, and error, respectively.
- FCG and FCB: The F-calculated for genotype and blocks, respectively.
- PFG and PFB: The P-values for genotype and blocks, respectively.
- CV: coefficient of variation.
- h2: broad-sense heritability.
- AS: accuracy of selection (square root of- h2)
 
References
Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
# ANOVA for all variables in data
ind_an <- anova_ind(data_ge,
                    env = ENV,
                    gen = GEN,
                    rep = REP,
                    resp = everything())
#> Evaluating trait GY |======================                      | 50% 00:00:00 
Evaluating trait HM |============================================| 100% 00:00:00 
# mean for each environment
get_model_data(ind_an)
#> Class of the model: anova_ind
#> Variable extracted: ALL
#> # A tibble: 28 × 16
#>    trait ENV    MEAN   DFG   MSG   FCG     PFG   DFB    MSB    FCB     PFB   DFE
#>    <chr> <chr> <dbl> <int> <dbl> <dbl>   <dbl> <int>  <dbl>  <dbl>   <dbl> <int>
#>  1 GY    E1     2.52     9 0.337  2.34 5.94e-2     2 0.0652  0.453 6.43e-1    18
#>  2 GY    E10    2.18     9 0.296 11.1  1.10e-5     2 0.654  24.5   7.28e-6    18
#>  3 GY    E11    1.37     9 0.151  1.44 2.44e-1     2 0.377   3.59  4.86e-2    18
#>  4 GY    E12    1.61     9 0.320  5.98 6.47e-4     2 0.0919  1.72  2.08e-1    18
#>  5 GY    E13    2.91     9 0.713  7.18 2.10e-4     2 0.0767  0.772 4.77e-1    18
#>  6 GY    E14    1.78     9 0.131  1.73 1.53e-1     2 0.104   1.37  2.78e-1    18
#>  7 GY    E2     3.18     9 0.207  1.16 3.76e-1     2 0.698   3.91  3.88e-2    18
#>  8 GY    E3     4.06     9 0.335  1.87 1.23e-1     2 0.489   2.73  9.21e-2    18
#>  9 GY    E4     3.68     9 0.531  3.86 7.12e-3     2 0.116   0.846 4.46e-1    18
#> 10 GY    E5     3.91     9 0.526  7.93 1.10e-4     2 0.219   3.30  6.02e-2    18
#> # … with 18 more rows, and 4 more variables: MSE <dbl>, CV <dbl>, h2 <dbl>,
#> #   AS <dbl>
# P-value for genotype effect
get_model_data(ind_an, "PFG")
#> Class of the model: anova_ind
#> Variable extracted: PFG
#> # A tibble: 14 × 3
#>    ENV          GY         HM
#>    <chr>     <dbl>      <dbl>
#>  1 E1    0.0594    0.0293    
#>  2 E10   0.0000110 0.00000302
#>  3 E11   0.244     0.107     
#>  4 E12   0.000647  0.108     
#>  5 E13   0.000210  0.0000180 
#>  6 E14   0.153     0.00393   
#>  7 E2    0.376     0.00402   
#>  8 E3    0.123     0.0269    
#>  9 E4    0.00712   0.000451  
#> 10 E5    0.000110  0.126     
#> 11 E6    0.0635    0.000163  
#> 12 E7    0.00873   0.438     
#> 13 E8    0.000131  0.00127   
#> 14 E9    0.000562  0.00541   
# }
