
Function reference
- 
          
          gafem()
- Genotype analysis by fixed-effect models
- 
          
          gamem()
- Genotype analysis by mixed-effect models
- 
          
          plot(<gafem>)
- Several types of residual plots
- 
          
          plot(<gamem>)
- Several types of residual plots
- 
          
          predict(<gamem>)
- Predict method for gamem fits
- 
          
          print(<gamem>)
- Print an object of class gamem
- 
          
          cv_ammi()
- Cross-validation procedure
- 
          
          cv_ammif()
- Cross-validation procedure
- 
          
          ammi_indexes()AMMI_indexes()
- AMMI-based stability indexes
- 
          
          impute_missing_val()
- Missing value imputation
- 
          
          performs_ammi()
- Additive Main effects and Multiplicative Interaction
- 
          
          waas()
- Weighted Average of Absolute Scores
- 
          
          waas_means()
- Weighted Average of Absolute Scores
- 
          
          plot(<cvalidation>)
- Plot the RMSPD of a cross-validation procedure
- 
          
          plot(<performs_ammi>)
- Several types of residual plots
- 
          
          plot(<waas>)
- Several types of residual plots
- 
          
          predict(<waas>)
- Predict the means of a waas object
- 
          
          predict(<performs_ammi>)
- Predict the means of a performs_ammi object
- 
          
          print(<ammi_indexes>)
- Print an object of class ammi_indexes
- 
          
          print(<performs_ammi>)
- Print an object of class performs_ammi
- 
          
          print(<waas>)
- Print an object of class waas
- 
          
          print(<waas_means>)
- Print an object of class waas_means
BLUP
Analyze genotypes in single- or multi-environment trials using mixed-effect models with variance components and genetic parameter estimation.
- 
          
          cv_blup()
- Cross-validation procedure
- 
          
          gamem_met()
- Genotype-environment analysis by mixed-effect models
- 
          
          hmgv()rpgv()hmrpgv()blup_indexes()
- Stability indexes based on a mixed-effect model
- 
          
          waasb()
- Weighted Average of Absolute Scores
- 
          
          wsmp()
- Weighting between stability and mean performance
- 
          
          plot_blup()
- Plot the BLUPs for genotypes
- 
          
          plot_eigen()
- Plot the eigenvalues
- 
          
          plot_scores()
- Plot scores in different graphical interpretations
- 
          
          plot_waasby()
- Plot WAASBY values for genotype ranking
- 
          
          plot(<wsmp>)
- Plot heat maps with genotype ranking
- 
          
          plot(<waasb>)
- Several types of residual plots
- 
          
          predict(<waasb>)
- Predict method for waasb fits
- 
          
          print(<waasb>)
- Print an object of class waasb
- 
          
          gge()
- Genotype plus genotype-by-environment model
- 
          
          gtb()
- Genotype by trait biplot
- 
          
          gytb()
- Genotype by yield*trait biplot
- 
          
          plot(<gge>)
- Create GGE, GT or GYT biplots
- 
          
          predict(<gge>)
- Predict a two-way table based on GGE model
- 
          
          coincidence_index()
- Computes the coincidence index of genotype selection
- 
          
          fai_blup()
- Multi-trait selection index
- 
          
          mps()
- Mean performance and stability in multi-environment trials
- 
          
          mtmps()
- Multi-trait mean performance and stability index
- 
          
          mtsi()
- Multi-trait stability index
- 
          
          mgidi()
- Multitrait Genotype-Ideotype Distance Index
- 
          
          plot(<fai_blup>)
- Multi-trait selection index
- 
          
          plot(<mgidi>)
- Plot the multi-trait genotype-ideotype distance index
- 
          
          print(<mgidi>)
- Print an object of class mgidi
Print a mgidiobject in two ways. By default, the results are shown in the R console. The results can also be exported to the directory.
- 
          
          plot(<mtsi>)
- Plot the multi-trait stability index
- 
          
          plot(<mtmps>)
- Plot the multi-trait stability index
- 
          
          plot(<sh>)
- Plot the Smith-Hazel index
- 
          
          print(<coincidence>)
- Print an object of class coincidence
- 
          
          print(<mtsi>)
- Print an object of class mtsi
- 
          
          print(<mtmps>)
- Print an object of class mtmps
- 
          
          print(<sh>)
- Print an object of class sh
- 
          
          Smith_Hazel()
- Smith-Hazel index
Genotype-environment interaction
Visualize genotype-environment interaction patterns, rank genotypes within environments, compute genotype, environment, and genotype-environment effects; cluster environments, and compute parametric and non-parametric stability indexes
- 
          
          anova_ind()
- Within-environment analysis of variance
- 
          
          anova_joint()
- Joint analysis of variance
- 
          
          ge_cluster()
- Cluster genotypes or environments
- 
          
          ge_details()
- Details for genotype-environment trials
- 
          
          ge_effects()
- Genotype-environment effects
- 
          
          ge_means()
- Genotype-environment means
- 
          
          ge_plot()
- Graphical analysis of genotype-vs-environment interaction
- 
          
          ge_simula()g_simula()
- Simulate genotype and genotype-environment data
- 
          
          ge_winners()
- Genotype-environment winners
- 
          
          is_balanced_trial()
- Check if a data set is balanced
- 
          
          Annicchiarico()
- Annicchiarico's genotypic confidence index
- 
          
          corr_stab_ind()
- Correlation between stability indexes
- 
          
          ecovalence()
- Stability analysis based on Wricke's model
- 
          
          env_dissimilarity()
- Dissimilarity between environments
- 
          
          env_stratification()
- Environment stratification
- 
          
          ge_acv()
- Adjusted Coefficient of Variation as yield stability index
- 
          
          ge_factanal()
- Stability analysis and environment stratification
- 
          
          ge_polar()
- Power Law Residuals as yield stability index
- 
          
          ge_reg()
- Eberhart and Russell's regression model
- 
          
          ge_stats()
- Parametric and non-parametric stability statistics
- 
          
          gai()
- Geometric adaptability index
- 
          
          plot(<anova_joint>)
- Several types of residual plots
- 
          
          plot(<env_dissimilarity>)
- Plot an object of class env_dissimilarity
- 
          
          plot(<env_stratification>)
- Plot the env_stratification model
- 
          
          plot(<ge_cluster>)
- Plot an object of class ge_cluster
- 
          
          plot(<ge_effects>)
- Plot an object of class ge_effects
- 
          
          plot(<ge_factanal>)
- Plot the ge_factanal model
- 
          
          plot(<ge_reg>)
- Plot an object of class ge_reg
- 
          
          print(<Annicchiarico>)
- Print an object of class Annicchiarico
- 
          
          print(<anova_ind>)
- Print an object of class anova_ind
- 
          
          print(<anova_joint>)
- Print an object of class anova_joint
- 
          
          print(<ecovalence>)
- Print an object of class ecovalence
- 
          
          print(<env_dissimilarity>)
- Print an object of class env_dissimilarity
- 
          
          print(<env_stratification>)
- Print the env_stratification model
- 
          
          print(<ge_factanal>)
- Print an object of class ge_factanal
- 
          
          print(<ge_reg>)
- Print an object of class ge_reg
- 
          
          print(<ge_stats>)
- Print an object of class ge_stats
- 
          
          print(<Shukla>)
- Print an object of class Shukla
- 
          
          print(<Schmildt>)
- Print an object of class Schmildt
- 
          
          Schmildt()
- Schmildt's genotypic confidence index
- 
          
          Fox()
- Fox's stability function
- 
          
          Huehn()
- Huehn's stability statistics
- 
          
          print(<Fox>)
- Print an object of class Fox
- 
          
          print(<Huehn>)
- Print an object ofclass Huehn
- 
          
          print(<superiority>)
- Print an object ofclass superiority
- 
          
          print(<Thennarasu>)
- Print an object ofclass Thennarasu
- 
          
          Shukla()
- Shukla's stability variance parameter
- 
          
          superiority()
- Lin e Binns' superiority index
- 
          
          Thennarasu()
- Thennarasu's stability statistics
- 
          
          as.lpcor()
- Coerce to an object of class lpcor
- 
          
          corr_coef()
- Linear and partial correlation coefficients
- 
          
          corr_plot()
- Visualization of a correlation matrix
- 
          
          corr_focus()
- Focus on section of a correlation matrix
- 
          
          corr_ci()
- Confidence interval for correlation coefficient
- 
          
          corr_ss()
- Sample size planning for a desired Pearson's correlation confidence interval
- 
          
          correlated_vars()
- Generate correlated variables
- 
          
          covcor_design()
- Variance-covariance matrices for designed experiments
- 
          
          get_corvars()
- Generate normal, correlated variables
- 
          
          get_covmat()
- Generate a covariance matrix
- 
          
          is.lpcor()
- Coerce to an object of class lpcor
- 
          
          lpcor()
- Linear and Partial Correlation Coefficients
- 
          
          mantel_test()
- Mantel test
- 
          
          network_plot()
- Network plot of a correlation matrix
- 
          
          pairs_mantel()
- Mantel test for a set of correlation matrices
- 
          
          plot_ci()
- Plot the confidence interval for correlation
- 
          
          plot(<corr_coef>)
- Create a correlation heat map
- 
          
          plot(<correlated_vars>)
- Plot an object of class correlated_vars
- 
          
          print(<corr_coef>)
- Print an object of class corr_coef
- 
          
          print(<lpcor>)
- Print the partial correlation coefficients
- 
          
          can_corr()
- Canonical correlation analysis
- 
          
          plot(<can_cor>)
- Plots an object of class can_cor
- 
          
          print(<can_cor>)
- Print an object of class can_cor
- 
          
          clustering()
- Clustering analysis
- 
          
          get_dist()
- Get a distance matrix
- 
          
          mahala()
- Mahalanobis Distance
- 
          
          mahala_design()
- Mahalanobis distance from designed experiments
- 
          
          plot(<clustering>)
- Plot an object of class clustering
- 
          
          colindiag()
- Collinearity Diagnostics
- 
          
          non_collinear_vars()
- Select a set of predictors with minimal multicollinearity
- 
          
          path_coeff()path_coeff_mat()path_coeff_seq()
- Path coefficients with minimal multicollinearity
- 
          
          print(<colindiag>)
- Print an object of class colindiag
- 
          
          print(<path_coeff>)
- Print an object of class path_coeff
- 
          
          plot(<path_coeff>)
- Plots an object of class path_coeff
- 
          
          select_pred()
- Selects a best subset of predictor variables.
- 
          
          plot_bars()plot_factbars()
- Fast way to create bar plots
- 
          
          plot_lines()plot_factlines()
- Fast way to create line plots
- 
          
          plot(<resp_surf>)
- Plot the response surface model
- 
          
          resp_surf()
- Response surface model
- 
          
          acv()
- Adjusted Coefficient of Variation
- 
          
          desc_stat()desc_wider()
- Descriptive statistics
- 
          
          find_outliers()
- Find possible outliers in a dataset
- 
          
          inspect()
- Check for common errors in multi-environment trial data
- 
          
          fill_na()has_na()prop_na()remove_rows_na()remove_rows_all_na()remove_cols_na()remove_cols_all_na()select_cols_na()select_rows_na()replace_na()random_na()has_zero()remove_rows_zero()remove_cols_zero()select_cols_zero()select_rows_zero()replace_zero()
- Utilities for handling with NA and zero values
- 
          
          av_dev()ci_mean_t()ci_mean_z()cv()freq_table()freq_hist()hmean()gmean()kurt()n_missing()n_unique()n_valid()pseudo_sigma()range_data()row_col_mean()row_col_sum()sd_amo()sd_pop()sem()skew()sum_dev()ave_dev()sum_sq_dev()sum_sq()var_pop()var_amo()cv_by()max_by()min_by()means_by()mean_by()n_by()sd_by()var_by()sem_by()sum_by()
- Useful functions for computing descriptive statistics
- 
          
          clip_read()clip_write()
- Utilities for data Copy-Pasta
- 
          
          add_seq_block()recode_factor()df_to_selegen_54()
- Utilities for data organization
- 
          
          as_numeric()as_integer()as_logical()as_character()as_factor()
- Encode variables to a specific format
- 
          
          all_upper_case()all_lower_case()all_title_case()first_upper_case()extract_number()extract_string()find_text_in_num()has_text_in_num()remove_space()remove_strings()replace_number()replace_string()round_cols()tidy_strings()
- Utilities for handling with numbers and strings
- 
          
          add_cols()add_rows()add_row_id()all_pairs()add_prefix()add_suffix()colnames_to_lower()colnames_to_upper()colnames_to_title()column_to_first()column_to_last()column_to_rownames()rownames_to_column()remove_rownames()column_exists()concatenate()get_levels()get_levels_comb()get_level_size()reorder_cols()remove_cols()remove_rows()select_first_col()select_last_col()select_numeric_cols()select_non_numeric_cols()select_cols()select_rows()tidy_colnames()
- Utilities for handling with rows and columns
- 
          
          make_upper_tri()make_lower_tri()make_lower_upper()make_sym()tidy_sym()
- Utilities for handling with matrices
- 
          
          make_long()
- Two-way table to a 'long' format
- 
          
          make_mat()
- Make a two-way table
- 
          
          reorder_cormat()
- Reorder a correlation matrix
- 
          
          solve_svd()
- Pseudoinverse of a square matrix
- 
          
          set_intersect()set_union()set_difference()
- Utilities for set operations for many sets
- 
          
          venn_plot()
- Draw Venn diagrams
- 
          
          progress()run_progress()
- Utilities for text progress bar in the terminal
- 
          
          add_class()has_class()remove_class()set_class()
- Utilities for handling with classes
- 
          
          arrange_ggplot()
- Arrange separate ggplots into the same graphic
- 
          
          split_factors()as.split_factors()is.split_factors()
- Split a data frame by factors
- 
          
          bind_cv()
- Bind cross-validation objects
- 
          
          comb_vars()
- Pairwise combinations of variables
- 
          
          doo()
- Alternative to dplyr::do for doing anything
- 
          
          get_model_data()gmd()sel_gen()
- Get data from a model easily
- 
          
          metan-package
- Multi-Environment Trial Analysis
- 
          
          rbind_fill_id()
- Helper function for binding rows
- 
          
          resca()
- Rescale a variable to have specified minimum and maximum values
- 
          
          residual_plots()
- Several types of residual plots
- 
          
          set_wd_here()get_wd_here()open_wd_here()open_wd()
- Set and get the Working Directory quicky
- 
          
          stars_pval()
- Generate significance stars from p-values
- 
          
          theme_metan()theme_metan_minimal()transparent_color()ggplot_color()alpha_color()
- Personalized theme for ggplot2-based graphics
- 
          
          transpose_df()
- Transpose a data frame
- 
          
          tukey_hsd()
- Tukey Honest Significant Differences
- 
          
          sample_random()sample_systematic()
- Random Sampling
- 
          
          data_alpha
- Data from an alpha lattice design
- 
          
          data_g
- Single maize trial
- 
          
          data_ge
- Multi-environment trial of oat
- 
          
          data_ge2
- Multi-environment trial of maize
- 
          
          int.effects
- Data for examples
- 
          
          meansGxE
- Data for examples