Makes a radar plot showing the multitrait stability index proposed by Olivoto et al. (2019)
Usage
# S3 method for mtsi
plot(
  x,
  SI = 15,
  type = "index",
  position = "fill",
  genotypes = "selected",
  title = TRUE,
  radar = TRUE,
  arrange.label = FALSE,
  x.lab = NULL,
  y.lab = NULL,
  size.point = 2.5,
  size.line = 0.7,
  size.text = 10,
  width.bar = 0.75,
  n.dodge = 1,
  check.overlap = FALSE,
  invert = FALSE,
  col.sel = "red",
  col.nonsel = "black",
  legend.position = "bottom",
  ...
)Arguments
- x
- An object of class - mtsi
- SI
- An integer (0-100). The selection intensity in percentage of the total number of genotypes. 
- type
- The type of the plot. Defaults to - "index". Use- type = "contribution"to show the contribution of each factor to the MGIDI index of the selected genotypes.
- position
- The position adjustment when - type = "contribution". Defaults to- "fill", which shows relative proportions at each trait by stacking the bars and then standardizing each bar to have the same height. Use- position = "stack"to plot the MGIDI index for each genotype.
- genotypes
- When - type = "contribution"defines the genotypes to be shown in the plot. By default (- genotypes = "selected"only selected genotypes are shown. Use- genotypes = "all"to plot the contribution for all genotypes.)
- title
- Logical values (Defaults to - TRUE) to include automatically generated titles.
- radar
- Logical argument. If true (default) a radar plot is generated after using - coord_polar().
- arrange.label
- Logical argument. If - TRUE, the labels are arranged to avoid text overlapping. This becomes useful when the number of genotypes is large, say, more than 30.
- x.lab, y.lab
- The labels for the axes x and y, respectively. x label is set to null when a radar plot is produced. 
- size.point
- The size of the point in graphic. Defaults to 2.5. 
- size.line
- The size of the line in graphic. Defaults to 0.7. 
- size.text
- The size for the text in the plot. Defaults to 10. 
- width.bar
- The width of the bars if - type = "contribution". Defaults to 0.75.
- n.dodge
- The number of rows that should be used to render the x labels. This is useful for displaying labels that would otherwise overlap. 
- check.overlap
- Silently remove overlapping labels, (recursively) prioritizing the first, last, and middle labels. 
- invert
- Logical argument. If - TRUE, rotate the plot.
- col.sel
- The colour for selected genotypes. Defaults to - "red".
- col.nonsel
- The colour for nonselected genotypes. Defaults to - "black".
- legend.position
- The position of the legend. 
- ...
- Other arguments to be passed from - ggplot2::theme().
References
Olivoto, T., A.D.C. L\'ucio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J. (in press).
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
mtsi_model <- waasb(data_ge, ENV, GEN, REP, resp = c(GY, HM))
#> Evaluating trait GY |======================                      | 50% 00:00:02 
Evaluating trait HM |============================================| 100% 00:00:04 
#> Method: REML/BLUP
#> Random effects: GEN, GEN:ENV
#> Fixed effects: ENV, REP(ENV)
#> Denominador DF: Satterthwaite's method
#> ---------------------------------------------------------------------------
#> P-values for Likelihood Ratio Test of the analyzed traits
#> ---------------------------------------------------------------------------
#>     model       GY       HM
#>  COMPLETE       NA       NA
#>       GEN 1.11e-05 5.07e-03
#>   GEN:ENV 2.15e-11 2.27e-15
#> ---------------------------------------------------------------------------
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
mtsi_index <- mtsi(mtsi_model)
#> 
#> -------------------------------------------------------------------------------
#> Principal Component Analysis
#> -------------------------------------------------------------------------------
#> # A tibble: 2 × 4
#>   PC    Eigenvalues `Variance (%)` `Cum. variance (%)`
#>   <chr>       <dbl>          <dbl>               <dbl>
#> 1 PC1         1.37            68.5                68.5
#> 2 PC2         0.631           31.5               100  
#> -------------------------------------------------------------------------------
#> Factor Analysis - factorial loadings after rotation-
#> -------------------------------------------------------------------------------
#> # A tibble: 2 × 4
#>   VAR     FA1 Communality Uniquenesses
#>   <chr> <dbl>       <dbl>        <dbl>
#> 1 GY    0.827       0.685        0.315
#> 2 HM    0.827       0.685        0.315
#> -------------------------------------------------------------------------------
#> Comunalit Mean: 0.6846623 
#> -------------------------------------------------------------------------------
#> Selection differential for the  waasby index
#> -------------------------------------------------------------------------------
#> # A tibble: 2 × 6
#>   VAR   Factor    Xo    Xs    SD SDperc
#>   <chr> <chr>  <dbl> <dbl> <dbl>  <dbl>
#> 1 GY    FA 1    48.3  86.4  38.0   78.7
#> 2 HM    FA 1    58.3  79.2  21.0   36.0
#> -------------------------------------------------------------------------------
#> Selection differential for the mean of the variables
#> -------------------------------------------------------------------------------
#> # A tibble: 2 × 11
#>   VAR   Factor    Xo    Xs    SD SDperc    h2    SG SGperc sense     goal
#>   <chr> <chr>  <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl> <chr>    <dbl>
#> 1 GY    FA 1    2.67  2.98 0.305 11.4   0.815 0.249  9.31  increase   100
#> 2 HM    FA 1   48.1  48.4  0.265  0.551 0.686 0.182  0.378 increase   100
#> ------------------------------------------------------------------------------
#> Selected genotypes
#> -------------------------------------------------------------------------------
#> G8 G3
#> -------------------------------------------------------------------------------
plot(mtsi_index)
 # }
# }
