Graphs of the Canonical Correlation Analysis
Usage
# S3 method for can_cor
plot(
  x,
  type = 1,
  plot_theme = theme_metan(),
  size.tex.lab = 12,
  size.tex.pa = 3.5,
  x.lab = NULL,
  x.lim = NULL,
  x.breaks = waiver(),
  y.lab = NULL,
  y.lim = NULL,
  y.breaks = waiver(),
  axis.expand = 1.1,
  shape = 21,
  col.shape = "orange",
  col.alpha = 0.9,
  size.shape = 3.5,
  size.bor.tick = 0.3,
  labels = FALSE,
  main = NULL,
  ...
)Arguments
- x
- The - waasb object
- type
- The type of the plot. Defaults to - type = 1(Scree-plot of the correlations of the canonical loadings). Use- type = 2, to produce a plot with the scores of the variables in the first group,- type = 3to produce a plot with the scores of the variables in the second group, or- type = 4to produce a circle of correlations.
- plot_theme
- The graphical theme of the plot. Default is - plot_theme = theme_metan(). For more details,see- ggplot2::theme().
- size.tex.lab
- The size of the text in axis text and labels. 
- size.tex.pa
- The size of the text of the plot area. Default is - 3.5.
- x.lab
- The label of x-axis. Each plot has a default value. New arguments can be inserted as - x.lab = 'my label'.
- x.lim
- The range of x-axis. Default is - NULL(maximum and minimum values of the data set). New arguments can be inserted as- x.lim = c(x.min, x.max).
- x.breaks
- The breaks to be plotted in the x-axis. Default is - authomatic breaks. New arguments can be inserted as- x.breaks = c(breaks)
- y.lab
- The label of y-axis. Each plot has a default value. New arguments can be inserted as - y.lab = 'my label'.
- y.lim
- The range of y-axis. Default is - NULL. The same arguments than- x.limcan be used.
- y.breaks
- The breaks to be plotted in the x-axis. Default is - authomatic breaks. The same arguments than- x.breakscan be used.
- axis.expand
- Multiplication factor to expand the axis limits by to enable fitting of labels. Default is - 1.1.
- shape
- The shape of points in the plot. Default is - 21(circle). Values must be between- 21-25:- 21(circle),- 22(square),- 23(diamond),- 24(up triangle), and- 25(low triangle).
- col.shape
- A vector of length 2 that contains the color of shapes for genotypes above and below of the mean, respectively. Defaults to - "orange".- c("blue", "red").
- col.alpha
- The alpha value for the color. Default is - 0.9. Values must be between- 0(full transparency) to- 1(full color).
- size.shape
- The size of the shape in the plot. Default is - 3.5.
- size.bor.tick
- The size of tick of shape. Default is - 0.3. The size of the shape will be- size.shape + size.bor.tick
- labels
- Logical arguments. If - TRUEthen the points in the plot will have labels.
- main
- The title of the plot. Defaults to - NULL, in which each plot will have a default title. Use a string text to create an own title or set to- main = FALSEto omit the plot title.
- ...
- Currently not used. 
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
cc1 = can_corr(data_ge2,
               FG = c(PH, EH, EP),
               SG = c(EL, ED, CL, CD, CW, KW, NR))
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between variables of first group (FG)
#> ---------------------------------------------------------------------------
#>           PH        EH        EP
#> PH 1.0000000 0.9318282 0.6384123
#> EH 0.9318282 1.0000000 0.8695460
#> EP 0.6384123 0.8695460 1.0000000
#> ---------------------------------------------------------------------------
#> Collinearity within first group 
#> ---------------------------------------------------------------------------
#> The multicollinearity in the matrix should be investigated.
#> CN = 977.586
#> Largest VIF = 229.164618380199
#> Matrix determinant: 0.0025852 
#> Largest correlation: PH x EH = 0.932 
#> Smallest correlation: PH x EP = 0.638 
#> Number of VIFs > 10: 3 
#> Number of correlations with r >= |0.8|: 2 
#> Variables with largest weight in the last eigenvalues: 
#> EH > PH > EP 
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between variables of second group (SG)
#> ---------------------------------------------------------------------------
#>             EL        ED        CL          CD        CW        KW          NR
#> EL  1.00000000 0.3851451 0.2554068  0.91186526 0.4581728 0.6685601 -0.01387378
#> ED  0.38514512 1.0000000 0.6974629  0.38971282 0.7371305 0.8241426  0.55253448
#> CL  0.25540676 0.6974629 1.0000000  0.30036364 0.7383379 0.4709310  0.26193592
#> CD  0.91186526 0.3897128 0.3003636  1.00000000 0.4840299 0.6259806 -0.03584984
#> CW  0.45817278 0.7371305 0.7383379  0.48402989 1.0000000 0.7348622  0.16565752
#> KW  0.66856012 0.8241426 0.4709310  0.62598062 0.7348622 1.0000000  0.36214470
#> NR -0.01387378 0.5525345 0.2619359 -0.03584984 0.1656575 0.3621447  1.00000000
#> ---------------------------------------------------------------------------
#> Collinearity within second group 
#> ---------------------------------------------------------------------------
#> Weak multicollinearity in the matrix
#> CN = 68.376
#> Matrix determinant: 0.0015322 
#> Largest correlation: EL x CD = 0.912 
#> Smallest correlation: EL x NR = -0.014 
#> Number of VIFs > 10: 0 
#> Number of correlations with r >= |0.8|: 2 
#> Variables with largest weight in the last eigenvalues: 
#> KW > ED > EL > CD > CL > CW > NR 
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between FG and SG
#> ---------------------------------------------------------------------------
#>           EL        ED        CL        CD        CW        KW        NR
#> PH 0.3801960 0.6613148 0.3251648 0.3153910 0.5047388 0.7534439 0.3286065
#> EH 0.3626537 0.6302561 0.3971935 0.2805118 0.5193136 0.7029469 0.2648051
#> EP 0.2634237 0.4580196 0.3908239 0.1750448 0.4248098 0.4974193 0.1404315
#> ---------------------------------------------------------------------------
#> Correlation of the canonical pairs and hypothesis testing 
#> ---------------------------------------------------------------------------
#>            Var   Percent       Sum      Corr  Lambda     Chisq DF   p_val
#> U1V1 0.6315391 76.189861  76.18986 0.7946943 0.29647 181.76246 21 0.00000
#> U2V2 0.1867300 22.527394  98.71725 0.4321226 0.80462  32.49857 12 0.00116
#> U3V3 0.0106327  1.282745 100.00000 0.1031150 0.98937   1.59810  5 0.90148
#> ---------------------------------------------------------------------------
#> Canonical coefficients of the first group 
#> ---------------------------------------------------------------------------
#>           U1        U2         U3
#> PH  2.526492  5.866685   7.317151
#> EH -2.436372 -8.263008 -12.447948
#> EP  1.144533  2.747079   6.487414
#> ---------------------------------------------------------------------------
#> Canonical coefficients of the second group 
#> ---------------------------------------------------------------------------
#>             V1         V2         V3
#> EL -0.00892526 -0.9360837  0.7670684
#> ED  0.19371881  0.2969851 -1.8240876
#> CL -0.08385387 -1.2150642  0.1719827
#> CD -0.30662013  1.1369520 -1.4230311
#> CW -0.15225785  0.1913916  0.4777071
#> KW  1.16752245 -0.1255657  1.1247216
#> NR -0.05865868  0.4861885  0.6223953
#> ---------------------------------------------------------------------------
#> Canonical loads of the first group 
#> ---------------------------------------------------------------------------
#>           U1          U2          U3
#> PH 0.9868962 -0.07924975 -0.14055369
#> EH 0.9131089 -0.40755395  0.01148369
#> EP 0.6389394 -0.69262240  0.33470980
#> ---------------------------------------------------------------------------
#> Canonical loads of the second group 
#> ---------------------------------------------------------------------------
#>           V1          V2          V3
#> EL 0.4762839 -0.09829294 -0.22697572
#> ED 0.8298627 -0.16168789 -0.34031848
#> CL 0.3789207 -0.69598199 -0.28635983
#> CD 0.3948013  0.03075542 -0.46981539
#> CW 0.6243739 -0.37712156 -0.14762207
#> KW 0.9566482 -0.05042023 -0.09910729
#> NR 0.4351188  0.29047403  0.18639351
plot(cc1, 2)
 cc2 <-
data_ge2 %>%
mean_by(GEN) %>%
column_to_rownames("GEN") %>%
can_corr(FG = c(PH, EH, EP),
               SG = c(EL, ED, CL, CD, CW, KW, NR))
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between variables of first group (FG)
#> ---------------------------------------------------------------------------
#>           PH        EH        EP
#> PH 1.0000000 0.9189173 0.3939778
#> EH 0.9189173 1.0000000 0.7192828
#> EP 0.3939778 0.7192828 1.0000000
#> ---------------------------------------------------------------------------
#> Collinearity within first group 
#> ---------------------------------------------------------------------------
#> The multicollinearity in the matrix should be investigated.
#> CN = 919.528
#> Largest VIF = 221.547716810886
#> Matrix determinant: 0.0038131 
#> Largest correlation: PH x EH = 0.919 
#> Smallest correlation: PH x EP = 0.394 
#> Number of VIFs > 10: 3 
#> Number of correlations with r >= |0.8|: 1 
#> Variables with largest weight in the last eigenvalues: 
#> EH > PH > EP 
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between variables of second group (SG)
#> ---------------------------------------------------------------------------
#>             EL        ED        CL         CD        CW        KW          NR
#> EL  1.00000000 0.4010411 0.5131577  0.9377211 0.6957997 0.6563793 -0.07225443
#> ED  0.40104108 1.0000000 0.8486848  0.3152407 0.7881641 0.8950824  0.69413451
#> CL  0.51315772 0.8486848 1.0000000  0.4256584 0.8716229 0.7125578  0.58994313
#> CD  0.93772107 0.3152407 0.4256584  1.0000000 0.6238673 0.5902949 -0.18145262
#> CW  0.69579970 0.7881641 0.8716229  0.6238673 1.0000000 0.8535102  0.50440841
#> KW  0.65637931 0.8950824 0.7125578  0.5902949 0.8535102 1.0000000  0.46907822
#> NR -0.07225443 0.6941345 0.5899431 -0.1814526 0.5044084 0.4690782  1.00000000
#> ---------------------------------------------------------------------------
#> Collinearity within second group 
#> ---------------------------------------------------------------------------
#> Severe multicollinearity in the matrix! Pay attention on the variables listed bellow
#> CN = 1552.123
#> Matrix determinant: 7.9e-06 
#> Largest correlation: EL x CD = 0.938 
#> Smallest correlation: EL x NR = -0.072 
#> Number of VIFs > 10: 6 
#> Number of correlations with r >= |0.8|: 5 
#> Variables with largest weight in the last eigenvalues: 
#> ED > KW > CL > CW > EL > NR > CD 
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between FG and SG
#> ---------------------------------------------------------------------------
#>           EL        ED        CL        CD        CW        KW         NR
#> PH 0.2290182 0.7918292 0.5262760 0.2345645 0.6530199 0.8224189 0.45295974
#> EH 0.3025919 0.7768116 0.6219269 0.2729626 0.6736994 0.7936528 0.33082529
#> EP 0.3682229 0.4971223 0.5993264 0.2888874 0.4874277 0.4732954 0.04794453
#> ---------------------------------------------------------------------------
#> Correlation of the canonical pairs and hypothesis testing 
#> ---------------------------------------------------------------------------
#>            Var  Percent       Sum      Corr  Lambda    Chisq DF   p_val
#> U1V1 0.9718658 41.47197  41.47197 0.9858325 0.00218 39.83935 21 0.00778
#> U2V2 0.8317335 35.49217  76.96414 0.9119942 0.07743 16.62936 12 0.16408
#> U3V3 0.5398289 23.03586 100.00000 0.7347305 0.46017  5.04502  5 0.41041
#> ---------------------------------------------------------------------------
#> Canonical coefficients of the first group 
#> ---------------------------------------------------------------------------
#>           U1        U2         U3
#> PH  5.773517  6.359457   7.266106
#> EH -6.410034 -8.561079 -10.352155
#> EP  2.560042  2.837721   5.118397
#> ---------------------------------------------------------------------------
#> Canonical coefficients of the second group 
#> ---------------------------------------------------------------------------
#>             V1         V2         V3
#> EL -0.59514582  0.8165268  0.7660462
#> ED  2.24335840  4.5202765 -1.7746076
#> CL -1.60643643 -3.6532159  2.6019702
#> CD  0.81059969  1.4810578  0.1877906
#> CW  1.11115714  1.4920125 -2.5251980
#> KW -1.03618614 -4.8770282  1.2249614
#> NR  0.04635339  1.0825779  0.6376536
#> ---------------------------------------------------------------------------
#> Canonical loads of the first group 
#> ---------------------------------------------------------------------------
#>           U1         U2           U3
#> PH 0.8918261 -0.3894677 -0.230132932
#> EH 0.7367446 -0.6761412  0.006369758
#> EP 0.2240527 -0.8146310  0.534954830
#> ---------------------------------------------------------------------------
#> Canonical loads of the second group 
#> ---------------------------------------------------------------------------
#>           V1          V2        V3
#> EL 0.3299566 -0.09777307 0.5666060
#> ED 0.8773340 -0.22373844 0.3488486
#> CL 0.5946161 -0.30352692 0.6169395
#> CD 0.3490720 -0.02781792 0.4862462
#> CW 0.7096748 -0.25390402 0.3613829
#> KW 0.8851044 -0.24266216 0.2480914
#> NR 0.6261809  0.20220468 0.1522980
plot(cc2, 2, labels = TRUE)
cc2 <-
data_ge2 %>%
mean_by(GEN) %>%
column_to_rownames("GEN") %>%
can_corr(FG = c(PH, EH, EP),
               SG = c(EL, ED, CL, CD, CW, KW, NR))
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between variables of first group (FG)
#> ---------------------------------------------------------------------------
#>           PH        EH        EP
#> PH 1.0000000 0.9189173 0.3939778
#> EH 0.9189173 1.0000000 0.7192828
#> EP 0.3939778 0.7192828 1.0000000
#> ---------------------------------------------------------------------------
#> Collinearity within first group 
#> ---------------------------------------------------------------------------
#> The multicollinearity in the matrix should be investigated.
#> CN = 919.528
#> Largest VIF = 221.547716810886
#> Matrix determinant: 0.0038131 
#> Largest correlation: PH x EH = 0.919 
#> Smallest correlation: PH x EP = 0.394 
#> Number of VIFs > 10: 3 
#> Number of correlations with r >= |0.8|: 1 
#> Variables with largest weight in the last eigenvalues: 
#> EH > PH > EP 
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between variables of second group (SG)
#> ---------------------------------------------------------------------------
#>             EL        ED        CL         CD        CW        KW          NR
#> EL  1.00000000 0.4010411 0.5131577  0.9377211 0.6957997 0.6563793 -0.07225443
#> ED  0.40104108 1.0000000 0.8486848  0.3152407 0.7881641 0.8950824  0.69413451
#> CL  0.51315772 0.8486848 1.0000000  0.4256584 0.8716229 0.7125578  0.58994313
#> CD  0.93772107 0.3152407 0.4256584  1.0000000 0.6238673 0.5902949 -0.18145262
#> CW  0.69579970 0.7881641 0.8716229  0.6238673 1.0000000 0.8535102  0.50440841
#> KW  0.65637931 0.8950824 0.7125578  0.5902949 0.8535102 1.0000000  0.46907822
#> NR -0.07225443 0.6941345 0.5899431 -0.1814526 0.5044084 0.4690782  1.00000000
#> ---------------------------------------------------------------------------
#> Collinearity within second group 
#> ---------------------------------------------------------------------------
#> Severe multicollinearity in the matrix! Pay attention on the variables listed bellow
#> CN = 1552.123
#> Matrix determinant: 7.9e-06 
#> Largest correlation: EL x CD = 0.938 
#> Smallest correlation: EL x NR = -0.072 
#> Number of VIFs > 10: 6 
#> Number of correlations with r >= |0.8|: 5 
#> Variables with largest weight in the last eigenvalues: 
#> ED > KW > CL > CW > EL > NR > CD 
#> ---------------------------------------------------------------------------
#> Matrix (correlation/covariance) between FG and SG
#> ---------------------------------------------------------------------------
#>           EL        ED        CL        CD        CW        KW         NR
#> PH 0.2290182 0.7918292 0.5262760 0.2345645 0.6530199 0.8224189 0.45295974
#> EH 0.3025919 0.7768116 0.6219269 0.2729626 0.6736994 0.7936528 0.33082529
#> EP 0.3682229 0.4971223 0.5993264 0.2888874 0.4874277 0.4732954 0.04794453
#> ---------------------------------------------------------------------------
#> Correlation of the canonical pairs and hypothesis testing 
#> ---------------------------------------------------------------------------
#>            Var  Percent       Sum      Corr  Lambda    Chisq DF   p_val
#> U1V1 0.9718658 41.47197  41.47197 0.9858325 0.00218 39.83935 21 0.00778
#> U2V2 0.8317335 35.49217  76.96414 0.9119942 0.07743 16.62936 12 0.16408
#> U3V3 0.5398289 23.03586 100.00000 0.7347305 0.46017  5.04502  5 0.41041
#> ---------------------------------------------------------------------------
#> Canonical coefficients of the first group 
#> ---------------------------------------------------------------------------
#>           U1        U2         U3
#> PH  5.773517  6.359457   7.266106
#> EH -6.410034 -8.561079 -10.352155
#> EP  2.560042  2.837721   5.118397
#> ---------------------------------------------------------------------------
#> Canonical coefficients of the second group 
#> ---------------------------------------------------------------------------
#>             V1         V2         V3
#> EL -0.59514582  0.8165268  0.7660462
#> ED  2.24335840  4.5202765 -1.7746076
#> CL -1.60643643 -3.6532159  2.6019702
#> CD  0.81059969  1.4810578  0.1877906
#> CW  1.11115714  1.4920125 -2.5251980
#> KW -1.03618614 -4.8770282  1.2249614
#> NR  0.04635339  1.0825779  0.6376536
#> ---------------------------------------------------------------------------
#> Canonical loads of the first group 
#> ---------------------------------------------------------------------------
#>           U1         U2           U3
#> PH 0.8918261 -0.3894677 -0.230132932
#> EH 0.7367446 -0.6761412  0.006369758
#> EP 0.2240527 -0.8146310  0.534954830
#> ---------------------------------------------------------------------------
#> Canonical loads of the second group 
#> ---------------------------------------------------------------------------
#>           V1          V2        V3
#> EL 0.3299566 -0.09777307 0.5666060
#> ED 0.8773340 -0.22373844 0.3488486
#> CL 0.5946161 -0.30352692 0.6169395
#> CD 0.3490720 -0.02781792 0.4862462
#> CW 0.7096748 -0.25390402 0.3613829
#> KW 0.8851044 -0.24266216 0.2480914
#> NR 0.6261809  0.20220468 0.1522980
plot(cc2, 2, labels = TRUE)
 # }
# }
