Usage
fai_blup(
  .data,
  use_data = "blup",
  DI = NULL,
  UI = NULL,
  SI = 15,
  mineval = 1,
  verbose = TRUE
)Arguments
- .data
- An object of class - waasbor a two-way table with genotypes in the rows and traits in columns. In the last case the row names must contain the genotypes names.
- use_data
- Define which data to use If - .datais an object of class- gamem. Defaults to- "blup"(the BLUPs for genotypes). Use- "pheno"to use phenotypic means instead BLUPs for computing the index.
- DI, UI
- A vector of the same length of - .datato construct the desirable (DI) and undesirable (UI) ideotypes. For each element of the vector, allowed values are- 'max',- 'min',- 'mean', or a numeric value. Use a comma-separated vector of text. For example,- DI = c("max, max, min, min"). By default, DI is set to- "max"for all traits and UI is set to- "min"for all traits.
- SI
- An integer (0-100). The selection intensity in percentage of the total number of genotypes. Defaults to 15. 
- mineval
- The minimum value so that an eigenvector is retained in the factor analysis. 
- verbose
- Logical value. If - TRUEsome results are shown in console.
Value
An object of class fai_blup with the following items:
- data The data (BLUPS) used to compute the index. 
- eigen The eigenvalues and explained variance for each axis. 
- FA The results of the factor analysis. 
- canonical_loadings The canonical loadings for each factor retained. 
- FAI A list with the FAI-BLUP index for each ideotype design. 
- sel_dif_trait A list with the selection differential for each ideotype design. 
- sel_gen The selected genotypes. 
- ideotype_construction A list with the construction of the ideotypes. 
- total_gain A list with the total gain for variables to be increased or decreased. 
References
Rocha, J.R.A.S.C.R, J.C. Machado, and P.C.S. Carneiro. 2018. Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy 10:52-60. doi:10.1111/gcbb.12443
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
mod <- waasb(data_ge,
             env = ENV,
             gen = GEN,
             rep = REP,
             resp = c(GY, HM))
#> Evaluating trait GY |======================                      | 50% 00:00:02 
Evaluating trait HM |============================================| 100% 00:00:05 
#> Method: REML/BLUP
#> Random effects: GEN, GEN:ENV
#> Fixed effects: ENV, REP(ENV)
#> Denominador DF: Satterthwaite's method
#> ---------------------------------------------------------------------------
#> P-values for Likelihood Ratio Test of the analyzed traits
#> ---------------------------------------------------------------------------
#>     model       GY       HM
#>  COMPLETE       NA       NA
#>       GEN 1.11e-05 5.07e-03
#>   GEN:ENV 2.15e-11 2.27e-15
#> ---------------------------------------------------------------------------
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
FAI <- fai_blup(mod,
                SI = 15,
                DI = c('max, max'),
                UI = c('min, min'))
#> 
#> -----------------------------------------------------------------------------------
#> Principal Component Analysis
#> -----------------------------------------------------------------------------------
#>     eigen.values cumulative.var
#> PC1          1.1          55.23
#> PC2          0.9         100.00
#> 
#> -----------------------------------------------------------------------------------
#> Factor Analysis
#> -----------------------------------------------------------------------------------
#>      FA1 comunalits
#> GY -0.74       0.55
#> HM  0.74       0.55
#> 
#> -----------------------------------------------------------------------------------
#> Comunalit Mean: 0.5523038 
#> Selection differential
#> -----------------------------------------------------------------------------------
#>   VAR Factor        Xo        Xs          SD     SDperc    sense goal
#> 1  GY      1  2.674242  2.594199 -0.08004274 -2.9931005 increase    0
#> 2  HM      1 48.088286 48.005568 -0.08271774 -0.1720122 increase    0
#> 
#> -----------------------------------------------------------------------------------
#> Selected genotypes
#> G4 G9
#> -----------------------------------------------------------------------------------
# }
