Usage
corr_plot(
  .data,
  ...,
  col.by = NULL,
  upper = "corr",
  lower = "scatter",
  decimal.mark = ".",
  axis.labels = FALSE,
  show.labels.in = "show",
  size.axis.label = 12,
  size.varnames = 12,
  col.varnames = "black",
  diag = TRUE,
  diag.type = "histogram",
  bins = 20,
  col.diag = "gray",
  alpha.diag = 1,
  col.up.panel = "gray",
  col.lw.panel = "gray",
  col.dia.panel = "gray",
  prob = 0.05,
  col.sign = "green",
  alpha.sign = 0.15,
  lab.position = "tr",
  progress = NULL,
  smooth = FALSE,
  col.smooth = "red",
  confint = TRUE,
  size.point = 1,
  shape.point = 19,
  alpha.point = 0.7,
  fill.point = NULL,
  col.point = "black",
  size.line = 0.5,
  minsize = 2,
  maxsize = 3,
  pan.spacing = 0.15,
  digits = 2,
  export = FALSE,
  file.type = "pdf",
  file.name = NULL,
  width = 8,
  height = 7,
  resolution = 300
)Arguments
- .data
- The data. Should, preferentially, contain numeric variables only. If - .datahas factor-columns, these columns will be deleted with a warning message.
- ...
- Variables to use in the correlation. If no variable is informed all the numeric variables from - .dataare used.
- col.by
- A categorical variable to map the color of the points by. Defaults to - NULL.
- upper
- The visualization method for the upper triangular correlation matrix. Must be one of - 'corr'(numeric values),- 'scatter'(the scatterplot for each pairwise combination), or- NULLto set a blank diagonal.
- lower
- The visualization method for the lower triangular correlation matrix. Must be one of - 'corr'(numeric values),- 'scatter'(the scatterplot for each pairwise combination), or- NULLto set a blank diagonal.
- decimal.mark
- The decimal mark. Defaults to - ".".
- axis.labels
- Should the axis labels be shown in the plot? Set to - FALSE.
- show.labels.in
- Where to show the axis labels. Defaults to "show" bottom and left. Use "diag" to show the labels on the diagonal. In this case, the diagonal layer (boxplot, density or histogram) will be overwritten. 
- size.axis.label
- The size of the text for axis labels if - axis.labels = TRUE. Defaults to 12.
- size.varnames
- The size of the text for variable names. Defaults to 12. 
- col.varnames
- The color of the text for variable names. Defaults to "black". 
- diag
- Should the diagonal be shown? 
- diag.type
- The type of plot to show in the diagonal if - diag TRUE. It must be one of the 'histogram' (to show an histogram), 'density' to show the Kernel density, or 'boxplot' (to show a boxplot).
- bins
- The number of bins, Defaults to 20. 
- col.diag
- If - diag = TRUEthen- diagcolis the color for the distribution. Set to gray.
- alpha.diag
- Alpha-transparency scale (0-1) to make the diagonal plot transparent. 0 = fully transparent; 1 = full color. Set to 0.15 
- col.up.panel, col.lw.panel, col.dia.panel
- The color for the upper, lower, and diagonal panels, respectively. Set to 'gray'. 
- prob
- The probability of error. Significant correlations will be highlighted with '', '', and '' (0.05, 0.01, and 0.001, respectively). Scatterplots with significant correlations may be color-highlighted. 
- col.sign
- The color that will highlight the significant correlations. Set to 'green'. 
- alpha.sign
- Alpha-transparency scale (0-1) to make the plot area transparent. 0 = fully transparent; 1 = full color. Set to 0.15 
- lab.position
- The position that the labels will appear. Set to - 'tr', i.e., the legends will appear in the top and right of the plot. Other allowed options are- 'tl'(top and left),- 'br'(bottom and right),- 'bl'(bottom and left).
- progress
- NULL(default) for a progress bar in interactive sessions with more than 15 plots,- TRUEfor a progress bar,- FALSEfor no progress bar.
- smooth
- Should a linear smooth line be shown in the scatterplots? Set to - FALSE.
- col.smooth
- The color for the smooth line. 
- confint
- Should a confidence band be shown with the smooth line? Set to - TRUE.
- size.point
- The size of the points in the plot. Set to - 0.5.
- shape.point
- The shape of the point, set to - 1.
- alpha.point
- Alpha-transparency scale (0-1) to make the points transparent. 0 = fully transparent; 1 = full color. Set to 0.7 
- fill.point
- The color to fill the points. Valid argument if points are between 21 and 25. 
- col.point
- The color for the edge of the point, set to - black.
- size.line
- The size of the line (smooth and diagonal). 
- minsize
- The size of the letter that will represent the smallest correlation coefficient. 
- maxsize
- The size of the letter that will represent the largest correlation coefficient. 
- pan.spacing
- The space between the panels. Set to 0.15. 
- digits
- The number of digits to show in the plot. 
- export
- Logical argument. If - TRUE, then the plot is exported to the current directory.
- file.type
- The format of the file if - export = TRUE. Set to- 'pdf'. Other possible values are- *.tiffusing- file.type = 'tiff'.
- file.name
- The name of the plot when exported. Set to - NULL, i.e., automatically.
- width
- The width of the plot, set to - 8.
- height
- The height of the plot, set to - 7.
- resolution
- The resolution of the plot if - file.type = 'tiff'is used. Set to- 300(300 dpi).
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
dataset <- data_ge2 %>% select_cols(1:7)
# Default plot setting
corr_plot(dataset)
 # Chosing variables to be correlated
corr_plot(dataset, PH, EH, EL)
# Chosing variables to be correlated
corr_plot(dataset, PH, EH, EL)
 # Axis labels, similar to the function pairs()
# Gray scale
corr_plot(dataset, PH, EH, EL,
          shape.point = 19,
          size.point = 2,
          alpha.point = 0.5,
          alpha.diag = 0,
          pan.spacing = 0,
          col.sign = 'gray',
          alpha.sign = 0.3,
          axis.labels = TRUE)
# Axis labels, similar to the function pairs()
# Gray scale
corr_plot(dataset, PH, EH, EL,
          shape.point = 19,
          size.point = 2,
          alpha.point = 0.5,
          alpha.diag = 0,
          pan.spacing = 0,
          col.sign = 'gray',
          alpha.sign = 0.3,
          axis.labels = TRUE)
 corr_plot(dataset, PH, EH, EL,
          prob = 0.01,
          shape.point = 21,
          col.point = 'black',
          fill.point = 'orange',
          size.point = 2,
          alpha.point = 0.6,
          maxsize = 4,
          minsize = 2,
          smooth = TRUE,
          size.line = 1,
          col.smooth = 'black',
          col.sign = 'cyan',
          col.up.panel = 'black',
          col.lw.panel = 'black',
          col.dia.panel = 'black',
          pan.spacing = 0,
          lab.position = 'tl')
corr_plot(dataset, PH, EH, EL,
          prob = 0.01,
          shape.point = 21,
          col.point = 'black',
          fill.point = 'orange',
          size.point = 2,
          alpha.point = 0.6,
          maxsize = 4,
          minsize = 2,
          smooth = TRUE,
          size.line = 1,
          col.smooth = 'black',
          col.sign = 'cyan',
          col.up.panel = 'black',
          col.lw.panel = 'black',
          col.dia.panel = 'black',
          pan.spacing = 0,
          lab.position = 'tl')
 # }
# }
