This function plots the 95% confidence interval for Pearson's correlation
coefficient generated by the function corr_ci.
Usage
plot_ci(
  object,
  fill = NULL,
  position.fill = 0.3,
  x.lab = NULL,
  y.lab = NULL,
  y.lim = NULL,
  y.breaks = waiver(),
  shape = 21,
  col.shape = "black",
  fill.shape = "orange",
  size.shape = 2.5,
  width.errbar = 0.2,
  main = TRUE,
  invert.axis = TRUE,
  reorder = TRUE,
  legend.position = "bottom",
  plot_theme = theme_metan()
)Arguments
- object
- An object generate by the function - corr_ci()
- fill
- If - corr_ci()is computed with the argument- byuse- fillto fill the shape by each level of the grouping variable- by.
- position.fill
- The position of shapes and errorbar when - fillis used. Defaults to- 0.3.
- x.lab
- The label of x-axis, set to 'Pairwise combinations'. New arguments can be inserted as - x.lab = 'my label'.
- y.lab
- The label of y-axis, set to 'Pearson's correlation coefficient' New arguments can be inserted as - y.lab = 'my label'.
- y.lim
- The range of x-axis. Default is - NULL. The same arguments than- x.limcan be used.
- y.breaks
- The breaks to be plotted in the x-axis. Default is - authomatic breaks. The same arguments than- x.breakscan be used.
- shape
- The shape point to represent the correlation coefficient. Default is - 21(circle). Values must be between- 21-25:- 21(circle),- 22(square),- 23(diamond),- 24(up triangle), and- 25(low triangle).
- col.shape
- The color for the shape edge. Set to - black.
- fill.shape
- The color to fill the shape. Set to - orange.
- size.shape
- The size for the shape point. Set to - 2.5.
- width.errbar
- The width for the errorbar showing the CI. 
- main
- The title of the plot. Set to - main = FALSEto ommite the plot title.
- invert.axis
- Should the names of the pairwise correlation appear in the y-axis? 
- reorder
- Logical argument. If - TRUE(default) the pairwise combinations are reordered according to the correlation coefficient.
- legend.position
- The position of the legend when using - fillargument. Defaults to- "bottom".
- plot_theme
- The graphical theme of the plot. Default is - plot_theme = theme_metan(). For more details, see- ggplot2::theme().
Examples
# \donttest{
library(metan)
library(dplyr)
# Traits that contains "E"
data_ge2 %>%
  select(contains('E')) %>%
  corr_ci() %>%
  plot_ci()
#> # A tibble: 21 × 7
#>    V1    V2       Corr     n     CI      LL     UL
#>    <chr> <chr>   <dbl> <int>  <dbl>   <dbl>  <dbl>
#>  1 EH    EP     0.870    156 0.0901  0.779  0.960 
#>  2 EH    EL     0.363    156 0.135   0.228  0.497 
#>  3 EH    ED     0.630    156 0.109   0.521  0.739 
#>  4 EH    CDED  -0.0659   156 0.170  -0.236  0.104 
#>  5 EH    PERK  -0.0213   156 0.176  -0.198  0.155 
#>  6 EH    NKE    0.388    156 0.132   0.256  0.520 
#>  7 EP    EL     0.263    156 0.146   0.118  0.409 
#>  8 EP    ED     0.458    156 0.125   0.333  0.583 
#>  9 EP    CDED   0.0897   156 0.167  -0.0775 0.257 
#> 10 EP    PERK  -0.0871   156 0.167  -0.255  0.0804
#> # … with 11 more rows
 # Group by environment
# Traits PH, EH, EP, EL, and ED
# Select only correlations with PH
data_ge2 %>%
 corr_ci(PH, EP, EL, ED, CW,
         sel.var = "PH",
         by = ENV) %>%
 plot_ci(fill = ENV)
#> # A tibble: 4 × 7
#>   V1    V2        Corr     n    CI     LL    UL
#>   <chr> <chr>    <dbl> <int> <dbl>  <dbl> <dbl>
#> 1 PH    EP    -0.124      39 0.326 -0.450 0.201
#> 2 PH    EL    -0.00287    39 0.359 -0.361 0.356
#> 3 PH    ED     0.0729     39 0.339 -0.266 0.412
#> 4 PH    CW    -0.0111     39 0.356 -0.367 0.345
#> # A tibble: 4 × 7
#>   V1    V2     Corr     n    CI    LL    UL
#>   <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 PH    EP    0.748    39 0.199 0.550 0.947
#> 2 PH    EL    0.572    39 0.228 0.344 0.801
#> 3 PH    ED    0.761    39 0.197 0.564 0.958
#> 4 PH    CW    0.532    39 0.236 0.297 0.768
#> # A tibble: 4 × 7
#>   V1    V2      Corr     n    CI     LL    UL
#>   <chr> <chr>  <dbl> <int> <dbl>  <dbl> <dbl>
#> 1 PH    EP    0.514     39 0.239  0.275 0.753
#> 2 PH    EL    0.0111    39 0.356 -0.345 0.367
#> 3 PH    ED    0.438     39 0.254  0.184 0.692
#> 4 PH    CW    0.163     39 0.316 -0.153 0.479
#> # A tibble: 4 × 7
#>   V1    V2     Corr     n    CI      LL    UL
#>   <chr> <chr> <dbl> <int> <dbl>   <dbl> <dbl>
#> 1 PH    EP    0.229    39 0.300 -0.0712 0.528
#> 2 PH    EL    0.154    39 0.318 -0.164  0.472
#> 3 PH    ED    0.411    39 0.260  0.151  0.671
#> 4 PH    CW    0.196    39 0.308 -0.112  0.503
# Group by environment
# Traits PH, EH, EP, EL, and ED
# Select only correlations with PH
data_ge2 %>%
 corr_ci(PH, EP, EL, ED, CW,
         sel.var = "PH",
         by = ENV) %>%
 plot_ci(fill = ENV)
#> # A tibble: 4 × 7
#>   V1    V2        Corr     n    CI     LL    UL
#>   <chr> <chr>    <dbl> <int> <dbl>  <dbl> <dbl>
#> 1 PH    EP    -0.124      39 0.326 -0.450 0.201
#> 2 PH    EL    -0.00287    39 0.359 -0.361 0.356
#> 3 PH    ED     0.0729     39 0.339 -0.266 0.412
#> 4 PH    CW    -0.0111     39 0.356 -0.367 0.345
#> # A tibble: 4 × 7
#>   V1    V2     Corr     n    CI    LL    UL
#>   <chr> <chr> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 PH    EP    0.748    39 0.199 0.550 0.947
#> 2 PH    EL    0.572    39 0.228 0.344 0.801
#> 3 PH    ED    0.761    39 0.197 0.564 0.958
#> 4 PH    CW    0.532    39 0.236 0.297 0.768
#> # A tibble: 4 × 7
#>   V1    V2      Corr     n    CI     LL    UL
#>   <chr> <chr>  <dbl> <int> <dbl>  <dbl> <dbl>
#> 1 PH    EP    0.514     39 0.239  0.275 0.753
#> 2 PH    EL    0.0111    39 0.356 -0.345 0.367
#> 3 PH    ED    0.438     39 0.254  0.184 0.692
#> 4 PH    CW    0.163     39 0.316 -0.153 0.479
#> # A tibble: 4 × 7
#>   V1    V2     Corr     n    CI      LL    UL
#>   <chr> <chr> <dbl> <int> <dbl>   <dbl> <dbl>
#> 1 PH    EP    0.229    39 0.300 -0.0712 0.528
#> 2 PH    EL    0.154    39 0.318 -0.164  0.472
#> 3 PH    ED    0.411    39 0.260  0.151  0.671
#> 4 PH    CW    0.196    39 0.308 -0.112  0.503
 # }
# }
