Compute the Mahalanobis distance of all pairwise rows in .means. The
result is a symmetric matrix containing the distances that may be used for
hierarchical clustering.
Arguments
- .means
- A matrix of data with, say, p columns. 
- covar
- The covariance matrix. 
- inverted
- Logical argument. If - TRUE,- covaris supposed to contain the inverse of the covariance matrix.
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
library(dplyr)
# Compute the mean for genotypes
means <- mean_by(data_ge, GEN) %>%
         column_to_rownames("GEN")
# Compute the covariance matrix
covmat <- cov(means)
# Compute the distance
dist <- mahala(means, covmat)
# Dendrogram
dend <- dist %>%
        as.dist() %>%
        hclust() %>%
        as.dendrogram()
plot(dend)
 # }
# }
