Skip to contents

[Stable]

Computes the dissimilarity between environments based on several approaches. See the section details for more details.

Usage

env_dissimilarity(.data, env, gen, rep, resp)

Arguments

.data

The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s).

env

The name of the column that contains the levels of the environments.

gen

The name of the column that contains the levels of the genotypes.

rep

The name of the column that contains the levels of the replications/blocks.

resp

The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example resp = c(var1, var2, var3). Select helpers are also allowed.

Value

A list with the following matrices:

  • SPART_CC: The percentage of the single (non cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Cruz and Castoldi (1991).

  • CPART_CC: The percentage of the complex (cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Cruz and Castoldi (1991).

  • SPART_RO: The percentage of the single (non cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Robertson (1959).

  • CPART_RO: The percentage of the complex (cross-over) part of the interaction between genotypes and pairs of environments according to the method proposed by Robertson (1959).

  • MSGE: Interaction mean square between genotypes and pairs of environments.

  • SSGE: Interaction sum of square between genotypes and pairs of environments.

  • correlation: Correlation coefficients between genotypes's average in each pair of environment.

Details

Roberteson (1959) proposed the partition of the mean square of the genotype-environment interaction (MS_GE) into single (S) and complex (C) parts, where \(S = \frac{1}{2}(\sqrt{Q1}-\sqrt{Q2})^2)\) and \(C = (1-r)\sqrt{Q1-Q2}\), being r the correlation between the genotype's average in the two environments; and Q1 and Q2 the genotype mean square in the environments 1 and 2, respectively. Cruz and Castoldi (1991) proposed a new decomposition of the MS_GE, in which the complex part is given by \(C = \sqrt{(1-r)^3\times Q1\times Q2}\).

References

Cruz, C.D., Castoldi, F. (1991). Decomposicao da interacao genotipos x ambientes em partes simples e complexa. Ceres, 38:422-430.

Robertson, A. (1959). Experimental design on the measurement of heritabilities and genetic correlations. biometrical genetics. New York: Pergamon Press.

Author

Tiago Olivoto tiagoolivoto@gmail.com

Examples

# \donttest{
library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
#> Evaluating trait Y |=============================================| 100% 00:00:00 

print(mod)
#> Variable GY 
#> ----------------------------------------------------------------------
#> Pearson's correlation coefficient
#> ----------------------------------------------------------------------
#>         E1    E10    E11    E12    E13    E14     E2     E3     E4     E5
#> E1   1.000  0.783  0.782  0.869  0.825  0.197  0.227  0.357 -0.011  0.704
#> E10  0.783  1.000  0.917  0.797  0.812  0.232  0.101 -0.136 -0.342  0.676
#> E11  0.782  0.917  1.000  0.749  0.840  0.234  0.438 -0.165 -0.130  0.635
#> E12  0.869  0.797  0.749  1.000  0.740  0.155  0.053  0.249 -0.190  0.567
#> E13  0.825  0.812  0.840  0.740  1.000  0.161  0.246  0.183 -0.045  0.814
#> E14  0.197  0.232  0.234  0.155  0.161  1.000  0.247 -0.427  0.149  0.218
#> E2   0.227  0.101  0.438  0.053  0.246  0.247  1.000 -0.069  0.661  0.210
#> E3   0.357 -0.136 -0.165  0.249  0.183 -0.427 -0.069  1.000  0.409  0.310
#> E4  -0.011 -0.342 -0.130 -0.190 -0.045  0.149  0.661  0.409  1.000  0.206
#> E5   0.704  0.676  0.635  0.567  0.814  0.218  0.210  0.310  0.206  1.000
#> E6   0.580  0.368  0.349  0.315  0.637  0.274  0.289  0.446  0.358  0.810
#> E7   0.454  0.394  0.188  0.350  0.152  0.566 -0.166  0.046  0.028  0.325
#> E8  -0.053  0.025  0.077  0.034  0.122  0.821  0.317 -0.293  0.417  0.216
#> E9   0.219  0.281  0.241  0.216 -0.184  0.323  0.119 -0.375 -0.276 -0.281
#>         E6     E7     E8     E9
#> E1   0.580  0.454 -0.053  0.219
#> E10  0.368  0.394  0.025  0.281
#> E11  0.349  0.188  0.077  0.241
#> E12  0.315  0.350  0.034  0.216
#> E13  0.637  0.152  0.122 -0.184
#> E14  0.274  0.566  0.821  0.323
#> E2   0.289 -0.166  0.317  0.119
#> E3   0.446  0.046 -0.293 -0.375
#> E4   0.358  0.028  0.417 -0.276
#> E5   0.810  0.325  0.216 -0.281
#> E6   1.000  0.241  0.240 -0.237
#> E7   0.241  1.000  0.265  0.456
#> E8   0.240  0.265  1.000 -0.106
#> E9  -0.237  0.456 -0.106  1.000
#> ----------------------------------------------------------------------
#> Minimum correlation =  -0.427 between environments 8 and 6 
#> Maximum correlation =  0.917 between environments 3 and 2 
#> ----------------------------------------------------------------------
#> Mean square GxEjj'
#> ----------------------------------------------------------------------
#>        E1   E10   E11   E12   E13   E14    E2    E3    E4    E5    E6    E7
#> E1  0.000 0.023 0.023 0.014 0.040 0.064 0.071 0.072 0.146 0.045 0.037 0.061
#> E10 0.023 0.000 0.010 0.021 0.044 0.056 0.075 0.119 0.183 0.048 0.047 0.064
#> E11 0.023 0.010 0.000 0.024 0.052 0.036 0.034 0.093 0.126 0.053 0.031 0.067
#> E12 0.014 0.021 0.024 0.000 0.054 0.065 0.083 0.082 0.168 0.063 0.054 0.071
#> E13 0.040 0.044 0.052 0.054 0.000 0.124 0.122 0.145 0.217 0.040 0.075 0.150
#> E14 0.064 0.056 0.036 0.065 0.124 0.000 0.043 0.107 0.097 0.090 0.032 0.038
#> E2  0.071 0.075 0.034 0.083 0.122 0.043 0.000 0.096 0.050 0.099 0.041 0.105
#> E3  0.072 0.119 0.093 0.082 0.145 0.107 0.096 0.000 0.087 0.100 0.047 0.107
#> E4  0.146 0.183 0.126 0.168 0.217 0.097 0.050 0.087 0.000 0.140 0.079 0.141
#> E5  0.045 0.048 0.053 0.063 0.040 0.090 0.099 0.100 0.140 0.000 0.038 0.098
#> E6  0.037 0.047 0.031 0.054 0.075 0.032 0.041 0.047 0.079 0.038 0.000 0.062
#> E7  0.061 0.064 0.067 0.071 0.150 0.038 0.105 0.107 0.141 0.098 0.062 0.000
#> E8  0.097 0.083 0.056 0.086 0.139 0.012 0.048 0.118 0.077 0.099 0.045 0.068
#> E9  0.134 0.120 0.113 0.133 0.275 0.103 0.133 0.229 0.257 0.257 0.160 0.097
#>        E8    E9
#> E1  0.097 0.134
#> E10 0.083 0.120
#> E11 0.056 0.113
#> E12 0.086 0.133
#> E13 0.139 0.275
#> E14 0.012 0.103
#> E2  0.048 0.133
#> E3  0.118 0.229
#> E4  0.077 0.257
#> E5  0.099 0.257
#> E6  0.045 0.160
#> E7  0.068 0.097
#> E8  0.000 0.163
#> E9  0.163 0.000
#> ----------------------------------------------------------------------
#> Total mean square =  8.091 
#> Minimum =  0.01 between environments 3 and 2 
#> Maximum =  0.275 between environments 14 and 5 
#> ----------------------------------------------------------------------
#> % Of the single part of MS GxEjj' (Robertson, 1959)
#> ----------------------------------------------------------------------
#>         E1    E10    E11    E12    E13    E14     E2     E3     E4     E5
#> E1   0.000  0.986 27.318  0.261 28.828 12.522  3.762  0.001  2.496  7.731
#> E10  0.986  0.000 40.737  0.385 34.423  9.953  1.763  0.171  3.118 11.398
#> E11 27.318 40.737  0.000 22.188 66.463  0.344  2.154  6.468 15.337 35.530
#> E12  0.261  0.385 22.188  0.000 23.835 10.808  2.477  0.034  2.638  6.684
#> E13 28.828 34.423 66.463 23.835  0.000 31.325 20.821  8.123  1.030  5.877
#> E14 12.522  9.953  0.344 10.808 31.325  0.000  3.400  7.351 23.171 24.437
#> E2   3.762  1.763  2.154  2.477 20.821  3.400  0.000  2.671 25.107 12.340
#> E3   0.001  0.171  6.468  0.034  8.123  7.351  2.671  0.000  4.323  3.574
#> E4   2.496  3.118 15.337  2.638  1.030 23.171 25.107  4.323  0.000  0.002
#> E5   7.731 11.398 35.530  6.684  5.877 24.437 12.340  3.574  0.002  0.000
#> E6  20.351 11.047  0.250 12.211 50.386  0.017  3.137 16.015 27.630 55.978
#> E7   0.000  0.349  9.145  0.050  7.742 20.888  2.510  0.000  2.611  3.560
#> E8   2.382  1.304  1.656  2.035 17.463 14.768  0.026  1.890 15.194 11.532
#> E9   7.339 10.869 28.075  8.369  0.025 34.705 17.152  4.388  0.588  0.634
#>         E6     E7     E8     E9
#> E1  20.351  0.000  2.382  7.339
#> E10 11.047  0.349  1.304 10.869
#> E11  0.250  9.145  1.656 28.075
#> E12 12.211  0.050  2.035  8.369
#> E13 50.386  7.742 17.463  0.025
#> E14  0.017 20.888 14.768 34.705
#> E2   3.137  2.510  0.026 17.152
#> E3  16.015  0.000  1.890  4.388
#> E4  27.630  2.611 15.194  0.588
#> E5  55.978  3.560 11.532  0.634
#> E6   0.000 12.350  3.465 21.839
#> E7  12.350  0.000  3.358 10.237
#> E8   3.465  3.358  0.000 13.356
#> E9  21.839 10.237 13.356  0.000
#> ----------------------------------------------------------------------
#> Average =  11.464 
#> Minimum =  0 between environments 12 and 12 
#> Maximum =  66.463 between environments 5 and 3 
#> ----------------------------------------------------------------------
#> % Of the complex part of MS GxEjj' (Robertson, 1959)
#> ----------------------------------------------------------------------
#>          E1    E10    E11    E12    E13    E14     E2      E3     E4     E5
#> E1    0.000 99.014 72.682 99.739 71.172 87.478 96.238  99.999 97.504 92.269
#> E10  99.014  0.000 59.263 99.615 65.577 90.047 98.237  99.829 96.882 88.602
#> E11  72.682 59.263  0.000 77.812 33.537 99.656 97.846  93.532 84.663 64.470
#> E12  99.739 99.615 77.812  0.000 76.165 89.192 97.523  99.966 97.362 93.316
#> E13  71.172 65.577 33.537 76.165  0.000 68.675 79.179  91.877 98.970 94.123
#> E14  87.478 90.047 99.656 89.192 68.675  0.000 96.600  92.649 76.829 75.563
#> E2   96.238 98.237 97.846 97.523 79.179 96.600  0.000  97.329 74.893 87.660
#> E3   99.999 99.829 93.532 99.966 91.877 92.649 97.329   0.000 95.677 96.426
#> E4   97.504 96.882 84.663 97.362 98.970 76.829 74.893  95.677  0.000 99.998
#> E5   92.269 88.602 64.470 93.316 94.123 75.563 87.660  96.426 99.998  0.000
#> E6   79.649 88.953 99.750 87.789 49.614 99.983 96.863  83.985 72.370 44.022
#> E7  100.000 99.651 90.855 99.950 92.258 79.112 97.490 100.000 97.389 96.440
#> E8   97.618 98.696 98.344 97.965 82.537 85.232 99.974  98.110 84.806 88.468
#> E9   92.661 89.131 71.925 91.631 99.975 65.295 82.848  95.612 99.412 99.366
#>         E6      E7     E8     E9
#> E1  79.649 100.000 97.618 92.661
#> E10 88.953  99.651 98.696 89.131
#> E11 99.750  90.855 98.344 71.925
#> E12 87.789  99.950 97.965 91.631
#> E13 49.614  92.258 82.537 99.975
#> E14 99.983  79.112 85.232 65.295
#> E2  96.863  97.490 99.974 82.848
#> E3  83.985 100.000 98.110 95.612
#> E4  72.370  97.389 84.806 99.412
#> E5  44.022  96.440 88.468 99.366
#> E6   0.000  87.650 96.535 78.161
#> E7  87.650   0.000 96.642 89.763
#> E8  96.535  96.642  0.000 86.644
#> E9  78.161  89.763 86.644  0.000
#> ----------------------------------------------------------------------
#> Average =  88.536 
#> Minimum =  33.537 between environments 5 and 3 
#> Maximum =  100 between environments 12 and 12 
#> ----------------------------------------------------------------------
#> % Of the single part of MS GxEjj' (Cruz and Castoldi, 1991)
#> ----------------------------------------------------------------------
#>         E1     E10    E11    E12    E13     E14     E2      E3      E4      E5
#> E1   0.000  53.838 66.053 63.833 70.220  21.623 15.404  19.783   1.938  49.824
#> E10 53.838   0.000 82.915 55.158 71.598  21.096  6.873  -6.386 -12.243  49.530
#> E11 66.053  82.915  0.000 61.028 86.585  12.789 26.675  -0.957  10.015  61.032
#> E12 63.833  55.158 61.028  0.000 61.171  18.020  5.082  13.394  -6.217  38.609
#> E13 70.220  71.598 86.585 61.171  0.000  37.079 31.266  16.941  -1.174  59.404
#> E14 21.623  21.096 12.789 18.020 37.079   0.000 16.166 -10.671  29.120  33.173
#> E2  15.404   6.873 26.675  5.082 31.266  16.166  0.000  -0.651  56.404  22.091
#> E3  19.783  -6.386 -0.957 13.394 16.941 -10.671 -0.651   0.000  26.463  19.926
#> E4   1.938 -12.243 10.015 -6.217 -1.174  29.120 56.404  26.463   0.000  10.922
#> E5  49.824  49.530 61.032 38.609 59.404  33.173 22.091  19.926  10.922   0.000
#> E6  48.374  29.311 19.513 27.350 70.128  14.796 18.342  37.471  42.032  80.822
#> E7  26.095  22.442 18.142 19.396 15.031  47.887 -5.293   2.351   3.998  20.747
#> E8  -0.157   2.521  5.536  3.726 22.646  63.892 17.366 -11.548  35.236  21.672
#> E9  18.128  24.437 37.322 18.890 -8.784  46.272 22.252 -12.098 -12.287 -12.467
#>         E6     E7      E8      E9
#> E1  48.374 26.095  -0.157  18.128
#> E10 29.311 22.442   2.521  24.437
#> E11 19.513 18.142   5.536  37.322
#> E12 27.350 19.396   3.726  18.890
#> E13 70.128 15.031  22.646  -8.784
#> E14 14.796 47.887  63.892  46.272
#> E2  18.342 -5.293  17.366  22.252
#> E3  37.471  2.351 -11.548 -12.098
#> E4  42.032  3.998  35.236 -12.287
#> E5  80.822 20.747  21.672 -12.467
#> E6   0.000 23.614  15.820  13.068
#> E7  23.614  0.000  17.172  33.771
#> E8  15.820 17.172   0.000   8.861
#> E9  13.068 33.771   8.861   0.000
#> ----------------------------------------------------------------------
#> Average =  25.478 
#> Minimum =  -12.467 between environments 14 and 10 
#> Maximum =  86.585 between environments 5 and 3 
#> ----------------------------------------------------------------------
#> % Of the complex part of MS GxEjj' (Cruz and Castoldi, 1991)
#> ----------------------------------------------------------------------
#>          E1     E10     E11     E12     E13     E14      E2      E3      E4
#> E1    0.000  46.162  33.947  36.167  29.780  78.377  84.596  80.217  98.062
#> E10  46.162   0.000  17.085  44.842  28.402  78.904  93.127 106.386 112.243
#> E11  33.947  17.085   0.000  38.972  13.415  87.211  73.325 100.957  89.985
#> E12  36.167  44.842  38.972   0.000  38.829  81.980  94.918  86.606 106.217
#> E13  29.780  28.402  13.415  38.829   0.000  62.921  68.734  83.059 101.174
#> E14  78.377  78.904  87.211  81.980  62.921   0.000  83.834 110.671  70.880
#> E2   84.596  93.127  73.325  94.918  68.734  83.834   0.000 100.651  43.596
#> E3   80.217 106.386 100.957  86.606  83.059 110.671 100.651   0.000  73.537
#> E4   98.062 112.243  89.985 106.217 101.174  70.880  43.596  73.537   0.000
#> E5   50.176  50.470  38.968  61.391  40.596  66.827  77.909  80.074  89.078
#> E6   51.626  70.689  80.487  72.650  29.872  85.204  81.658  62.529  57.968
#> E7   73.905  77.558  81.858  80.604  84.969  52.113 105.293  97.649  96.002
#> E8  100.157  97.479  94.464  96.274  77.354  36.108  82.634 111.548  64.764
#> E9   81.872  75.563  62.678  81.110 108.784  53.728  77.748 112.098 112.287
#>          E5     E6      E7      E8      E9
#> E1   50.176 51.626  73.905 100.157  81.872
#> E10  50.470 70.689  77.558  97.479  75.563
#> E11  38.968 80.487  81.858  94.464  62.678
#> E12  61.391 72.650  80.604  96.274  81.110
#> E13  40.596 29.872  84.969  77.354 108.784
#> E14  66.827 85.204  52.113  36.108  53.728
#> E2   77.909 81.658 105.293  82.634  77.748
#> E3   80.074 62.529  97.649 111.548 112.098
#> E4   89.078 57.968  96.002  64.764 112.287
#> E5    0.000 19.178  79.253  78.328 112.467
#> E6   19.178  0.000  76.386  84.180  86.932
#> E7   79.253 76.386   0.000  82.828  66.229
#> E8   78.328 84.180  82.828   0.000  91.139
#> E9  112.467 86.932  66.229  91.139   0.000
#> ----------------------------------------------------------------------
#> Average =  74.522 
#> Minimum =  13.415 between environments 5 and 3 
#> Maximum =  112.467 between environments 14 and 10 
#> ----------------------------------------------------------------------
#> 
#> 
#> 
# }