Usage
find_outliers(
  .data = NULL,
  var = NULL,
  by = NULL,
  plots = FALSE,
  coef = 1.5,
  verbose = TRUE,
  plot_theme = theme_metan()
)Arguments
- .data
- The data to be analyzed. Must be a dataframe or an object of class - split_factors.
- var
- The variable to be analyzed. 
- by
- One variable (factor) to compute the function by. It is a shortcut to - dplyr::group_by(). To compute the statistics by more than one grouping variable use that function.
- plots
- If - TRUE, then histograms and boxplots are shown.
- coef
- The multiplication coefficient, defaults to 1.5. For more details see - ?boxplot.stat.
- verbose
- If - verbose = TRUEthen some results are shown in the console.
- plot_theme
- The graphical theme of the plot. Default is - plot_theme = theme_metan(). For more details, see- ggplot2::theme().
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
find_outliers(data_ge2, var = PH, plots = TRUE)
 #> No possible outlier identified. 
#> 
# Find outliers within each environment
find_outliers(data_ge2, var = PH, by = ENV)
#> No possible outlier identified. 
#> 
#> No possible outlier identified. 
#> 
#> Trait: PH 
#> Number of possible outliers: 4 
#> Line(s): 7 11 14 15 
#> Proportion: 11.4%
#> Mean of the outliers: 2.438 
#> Maximum of the outliers: 2.766  | Line 11 
#> Minimum of the outliers: 1.71  | Line 7 
#> With outliers:    mean = 2.167 | CV = 10.309%
#> Without outliers: mean = 2.136 | CV = 7.377%
#> 
#> No possible outlier identified. 
#> 
#>   ENV outliers
#> 1  A1        0
#> 2  A2        0
#> 3  A3        4
#> 4  A4        0
# }
#> No possible outlier identified. 
#> 
# Find outliers within each environment
find_outliers(data_ge2, var = PH, by = ENV)
#> No possible outlier identified. 
#> 
#> No possible outlier identified. 
#> 
#> Trait: PH 
#> Number of possible outliers: 4 
#> Line(s): 7 11 14 15 
#> Proportion: 11.4%
#> Mean of the outliers: 2.438 
#> Maximum of the outliers: 2.766  | Line 11 
#> Minimum of the outliers: 1.71  | Line 7 
#> With outliers:    mean = 2.167 | CV = 10.309%
#> Without outliers: mean = 2.136 | CV = 7.377%
#> 
#> No possible outlier identified. 
#> 
#>   ENV outliers
#> 1  A1        0
#> 2  A2        0
#> 3  A3        4
#> 4  A4        0
# }
