Performs a stability analysis based on the scale-adjusted coefficient of
variation (Doring and Reckling, 2018). For more details see
acv()
Arguments
- .data
- The dataset containing the columns related to Environments, Genotypes and response variable(s). 
- env
- The name of the column that contains the levels of the environments. 
- gen
- The name of the column that contains the levels of the genotypes. 
- resp
- The response variable(s). To analyze multiple variables in a single procedure use, for example, - resp = c(var1, var2, var3).
- verbose
- Logical argument. If - verbose = FALSEthe code will run silently.
Value
An object of class ge_acv, which is a list containing the
results for each variable used in the argument resp. For each
variable, a tibble with the following columns is returned.
- GEN the genotype's code. 
- ACV The adjusted coefficient of variation 
- ACV_R The rank for the ACV value. 
References
Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
out <- ge_acv(data_ge2, ENV, GEN, c(EH, PH, EL, CD, ED, NKE))
#> Evaluating trait EH |=======                                     | 17% 00:00:00 
Evaluating trait PH |===============                             | 33% 00:00:00 
Evaluating trait EL |======================                      | 50% 00:00:00 
Evaluating trait CD |=============================               | 67% 00:00:00 
Evaluating trait ED |=====================================       | 83% 00:00:01 
Evaluating trait NKE |===========================================| 100% 00:00:01 
gmd(out)
#> Class of the model: ge_acv
#> Variable extracted: ACV
#> # A tibble: 13 × 7
#>    GEN      EH    PH    EL    CD    ED   NKE
#>    <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1 H1     22.9 12.5   1.71 0.953  1.65 13.2 
#>  2 H10    23.4 14.1   5.98 4.89   6.05  2.22
#>  3 H11    19.1 12.7   6.68 5.00   3.61  4.19
#>  4 H12    20.8 10.2   5.22 5.05   2.53 10.2 
#>  5 H13    14.7  9.19  4.25 4.63   6.11 17.2 
#>  6 H2     21.3 14.1   3.14 4.37   6.58 14.7 
#>  7 H3     25.7 17.4   8.59 6.74   4.07 14.3 
#>  8 H4     24.9 15.4   4.51 3.99   4.50 12.4 
#>  9 H5     21.1 13.2   4.92 2.19   3.04  2.99
#> 10 H6     14.5 12.4  10.8  8.11   6.33 19.1 
#> 11 H7     17.3 12.2   7.33 6.61   3.43  8.11
#> 12 H8     21.9 14.1   7.69 7.48   4.80 12.3 
#> 13 H9     23.4 15.7   7.02 7.00   4.64 13.2 
# }
