Usage
plot_waasby(
  x,
  var = 1,
  export = F,
  file.type = "pdf",
  file.name = NULL,
  plot_theme = theme_metan(),
  width = 6,
  height = 6,
  size.shape = 3.5,
  size.tex.lab = 12,
  col.shape = c("blue", "red"),
  x.lab = "WAASBY",
  y.lab = "Genotypes",
  x.breaks = waiver(),
  resolution = 300,
  ...
)Arguments
- x
- The - WAASBY object
- var
- The variable to plot. Defaults to - var = 1the first variable of- x.
- export
- Export (or not) the plot. Default is - T.
- file.type
- The type of file to be exported. Default is - pdf, Graphic can also be exported in- *.tiffformat by declaring- file.type = "tiff".
- file.name
- The name of the file for exportation, default is - NULL, i.e. the files are automatically named.
- plot_theme
- The graphical theme of the plot. Default is - plot_theme = theme_metan(). For more details, see- ggplot2::theme().
- width
- The width "inch" of the plot. Default is - 8.
- height
- The height "inch" of the plot. Default is - 7.
- size.shape
- The size of the shape in the plot. Default is - 3.5.
- size.tex.lab
- The size of the text in axis text and labels. 
- col.shape
- A vector of length 2 that contains the color of shapes for genotypes above and below of the mean, respectively. Default is - c("blue", "red").
- x.lab
- The label of the x axis in the plot. Default is - "WAASBY".
- y.lab
- The label of the y axis in the plot. Default is - "Genotypes".
- x.breaks
- The breaks to be plotted in the x-axis. Default is - authomatic breaks. New arguments can be inserted as- x.breaks = c(breaks)
- resolution
- The resolution of the plot. Parameter valid if - file.type = "tiff"is used. Default is- 300(300 dpi)
- ...
- Currently not used. 
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
library(ggplot2)
waasby <- waasb(data_ge,
                resp = GY,
                gen = GEN,
                env = ENV,
                rep = REP)
#> Evaluating trait GY |============================================| 100% 00:00:02 
#> Method: REML/BLUP
#> Random effects: GEN, GEN:ENV
#> Fixed effects: ENV, REP(ENV)
#> Denominador DF: Satterthwaite's method
#> ---------------------------------------------------------------------------
#> P-values for Likelihood Ratio Test of the analyzed traits
#> ---------------------------------------------------------------------------
#>     model       GY
#>  COMPLETE       NA
#>       GEN 1.11e-05
#>   GEN:ENV 2.15e-11
#> ---------------------------------------------------------------------------
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
waasby2 <- waas(data_ge,
                resp = GY,
                gen = GEN,
                env = ENV,
                rep = REP)
#> variable GY 
#> ---------------------------------------------------------------------------
#> AMMI analysis table
#> ---------------------------------------------------------------------------
#>     Source  Df  Sum Sq Mean Sq F value   Pr(>F) Proportion Accumulated
#>        ENV  13 279.574 21.5057   62.33 0.00e+00         NA          NA
#>   REP(ENV)  28   9.662  0.3451    3.57 3.59e-08         NA          NA
#>        GEN   9  12.995  1.4439   14.93 2.19e-19         NA          NA
#>    GEN:ENV 117  31.220  0.2668    2.76 1.01e-11         NA          NA
#>        PC1  21  10.749  0.5119    5.29 0.00e+00       34.4        34.4
#>        PC2  19   9.924  0.5223    5.40 0.00e+00       31.8        66.2
#>        PC3  17   4.039  0.2376    2.46 1.40e-03       12.9        79.2
#>        PC4  15   3.074  0.2049    2.12 9.60e-03        9.8        89.0
#>        PC5  13   1.446  0.1113    1.15 3.18e-01        4.6        93.6
#>        PC6  11   0.932  0.0848    0.88 5.61e-01        3.0        96.6
#>        PC7   9   0.567  0.0630    0.65 7.53e-01        1.8        98.4
#>        PC8   7   0.362  0.0518    0.54 8.04e-01        1.2        99.6
#>        PC9   5   0.126  0.0252    0.26 9.34e-01        0.4       100.0
#>  Residuals 252  24.367  0.0967      NA       NA         NA          NA
#>      Total 536 389.036  0.7258      NA       NA         NA          NA
#> ---------------------------------------------------------------------------
#> 
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
#> Done!
plot_waasby(waasby)
 plot_waasby(waasby2) +
            theme_gray() +
            theme(legend.position = "bottom",
                  legend.background = element_blank(),
                  legend.title = element_blank(),
                  legend.direction = "horizontal")
plot_waasby(waasby2) +
            theme_gray() +
            theme(legend.position = "bottom",
                  legend.background = element_blank(),
                  legend.title = element_blank(),
                  legend.direction = "horizontal")
 # }
# }
