One-way analysis of variance of genotypes conducted in both randomized complete block and alpha-lattice designs.
Arguments
- .data
- The dataset containing the columns related to, Genotypes, replication/block and response variable(s). 
- gen
- The name of the column that contains the levels of the genotypes, that will be treated as random effect. 
- rep
- The name of the column that contains the levels of the replications (assumed to be fixed). 
- resp
- The response variable(s). To analyze multiple variables in a single procedure a vector of variables may be used. For example - resp = c(var1, var2, var3). Select helpers are also allowed.
- block
- Defaults to - NULL. In this case, a randomized complete block design is considered. If block is informed, then a resolvable alpha-lattice design (Patterson and Williams, 1976) is employed. All effects, except the error, are assumed to be fixed. Use the function- gamem()to analyze a one-way trial with mixed-effect models.
- by
- One variable (factor) to compute the function by. It is a shortcut to - dplyr::group_by().This is especially useful, for example, when the researcher want to fit a fixed-effect model for each environment. In this case, an object of class gafem_grouped is returned.- mgidi()can then be used to compute the mgidi index within each environment.
- prob
- The error probability. Defaults to 0.05. 
- verbose
- Logical argument. If - verbose = FALSEthe code are run silently.
Value
A list where each element is the result for one variable containing the following objects:
- anova: The one-way ANOVA table. 
- model: The model with of - lm.
- augment: Information about each observation in the dataset. This includes predicted values in the - fittedcolumn, residuals in the- residcolumn, standardized residuals in the- stdrescolumn, the diagonal of the 'hat' matrix in the- hat, and standard errors for the fitted values in the- se.fitcolumn.
- hsd: The Tukey's 'Honest Significant Difference' for genotype effect. 
- details: A tibble with the following data: - Ngen, the number of genotypes;- OVmean, the grand mean;- Min, the minimum observed (returning the genotype and replication/block);- Maxthe maximum observed,- MinGENthe loser winner genotype,- MaxGEN, the winner genotype.
Details
gafem analyses data from a one-way genotype testing
experiment. By default, a randomized complete block design is used
according to the following model:
\[Y_{ij} = m + g_i + r_j + e_{ij}\]
where \(Y_{ij}\) is the response variable of the ith genotype in the
jth block; m is the grand mean (fixed); \(g_i\) is the effect
of the ith genotype; \(r_j\) is the effect of the jth
replicate; and \(e_{ij}\) is the random error.
When block is informed, then a resolvable alpha design is implemented,
according to the following model:
\[Y_{ijk} = m + g_i + r_j + b_{jk} + e_{ijk}\] where where \(y_{ijk}\) is the response variable of the ith genotype in the kth block of the jth replicate; m is the intercept, \(t_i\) is the effect for the ith genotype \(r_j\) is the effect of the jth replicate, \(b_{jk}\) is the effect of the kth incomplete block of the jth replicate, and \(e_{ijk}\) is the plot error effect corresponding to \(y_{ijk}\). All effects, except the random error are assumed to be fixed.
References
Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs. Biometrika 63:83-92.
Author
Tiago Olivoto tiagoolivoto@gmail.com
Examples
# \donttest{
library(metan)
# RCBD
rcbd <- gafem(data_g,
             gen = GEN,
             rep = REP,
             resp = c(PH, ED, EL, CL, CW))
#> Evaluating trait PH |=========                                   | 20% 00:00:00 
Evaluating trait ED |==================                          | 40% 00:00:00 
Evaluating trait EL |==========================                  | 60% 00:00:00 
Evaluating trait CL |===================================         | 80% 00:00:01 
Evaluating trait CW |============================================| 100% 00:00:01 
#> ---------------------------------------------------------------------------
#> One-way ANOVA table (Randomized complete block design)
#> ---------------------------------------------------------------------------
#>      model     PH       ED    EL       CL       CW
#>        REP 0.2328 1.40e-01 0.532 9.45e-03 4.10e-02
#>        GEN 0.0239 1.38e-05 0.373 1.18e-06 6.34e-06
#>  Residuals     NA       NA    NA       NA       NA
#> ---------------------------------------------------------------------------
#> Variables with nonsignificant genotype effect
#> EL 
#> ---------------------------------------------------------------------------
#> 
# Fitted values
get_model_data(rcbd)
#> Class of the model: gafem
#> Variable extracted: fitted
#> # A tibble: 39 × 8
#>    GEN   REP   factors    PH    ED    EL    CL    CW
#>    <fct> <fct> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1 H1    1     H1_1     2.13  50.8  15.1  31.7  27.6
#>  2 H1    2     H1_2     2.21  49.9  14.7  30.1  25.2
#>  3 H1    3     H1_3     2.25  51.1  14.7  30.9  27.8
#>  4 H10   1     H10_1    1.97  44.1  14.2  25.6  13.0
#>  5 H10   2     H10_2    2.05  43.2  13.8  24.0  10.6
#>  6 H10   3     H10_3    2.09  44.4  13.9  24.7  13.2
#>  7 H11   1     H11_1    2.03  47.3  14.5  27.2  16.7
#>  8 H11   2     H11_2    2.11  46.3  14.1  25.6  14.3
#>  9 H11   3     H11_3    2.16  47.5  14.2  26.3  16.9
#> 10 H12   1     H12_1    2.36  48.0  14.2  26.6  18.5
#> # … with 29 more rows
# ALPHA-LATTICE DESIGN
alpha <- gafem(data_alpha,
              gen = GEN,
              rep = REP,
              block = BLOCK,
              resp = YIELD)
#> Evaluating trait YIELD |=========================================| 100% 00:00:00 
#> ---------------------------------------------------------------------------
#> One-way ANOVA table (Alpha-lattice design)
#> ---------------------------------------------------------------------------
#>       model    YIELD
#>         REP 6.59e-09
#>         GEN 3.63e-07
#>  BLOCK(REP) 6.25e-03
#>   Residuals       NA
# Fitted values
get_model_data(alpha)
#> Class of the model: gafem
#> Variable extracted: fitted
#> # A tibble: 72 × 5
#>    GEN   REP   BLOCK factors   YIELD
#>    <fct> <fct> <fct> <chr>     <dbl>
#>  1 G11   R1    B1    G11_R1_B1  4.41
#>  2 G04   R1    B1    G04_R1_B1  4.73
#>  3 G05   R1    B1    G05_R1_B1  5.23
#>  4 G22   R1    B1    G22_R1_B1  4.65
#>  5 G21   R1    B2    G21_R1_B2  4.61
#>  6 G10   R1    B2    G10_R1_B2  4.21
#>  7 G20   R1    B2    G20_R1_B2  4.04
#>  8 G02   R1    B2    G02_R1_B2  4.32
#>  9 G23   R1    B3    G23_R1_B3  4.11
#> 10 G14   R1    B3    G14_R1_B3  4.70
#> # … with 62 more rows
# }
