application_mobilenet.Rd
MobileNet model architecture.
application_mobilenet(input_shape = NULL, alpha = 1, depth_multiplier = 1, dropout = 0.001, include_top = TRUE, weights = "imagenet", input_tensor = NULL, pooling = NULL, classes = 1000) mobilenet_preprocess_input(x) mobilenet_decode_predictions(preds, top = 5) mobilenet_load_model_hdf5(filepath)
input_shape | optional shape list, only to be specified if |
---|---|
alpha | controls the width of the network.
|
depth_multiplier | depth multiplier for depthwise convolution (also called the resolution multiplier) |
dropout | dropout rate |
include_top | whether to include the fully-connected layer at the top of the network. |
weights |
|
input_tensor | optional Keras tensor (i.e. output of |
pooling | Optional pooling mode for feature extraction when
|
classes | optional number of classes to classify images into, only to be
specified if |
x | input tensor, 4D |
preds | Tensor encoding a batch of predictions. |
top | integer, how many top-guesses to return. |
filepath | File path |
application_mobilenet()
and mobilenet_load_model_hdf5()
return a
Keras model instance. mobilenet_preprocess_input()
returns image input
suitable for feeding into a mobilenet model. mobilenet_decode_predictions()
returns a list of data frames with variables class_name
, class_description
,
and score
(one data frame per sample in batch input).
The mobilenet_preprocess_input()
function should be used for image
preprocessing. To load a saved instance of a MobileNet model use
the mobilenet_load_model_hdf5()
function. To prepare image input
for MobileNet use mobilenet_preprocess_input()
. To decode
predictions use mobilenet_decode_predictions()
.