application_mobilenet_v2.RdMobileNetV2 model architecture
application_mobilenet_v2(input_shape = NULL, alpha = 1, depth_multiplier = 1, include_top = TRUE, weights = "imagenet", input_tensor = NULL, pooling = NULL, classes = 1000) mobilenet_v2_preprocess_input(x) mobilenet_v2_decode_predictions(preds, top = 5) mobilenet_v2_load_model_hdf5(filepath)
| input_shape | optional shape list, only to be specified if |
|---|---|
| alpha | controls the width of the network.
|
| depth_multiplier | depth multiplier for depthwise convolution (also called the resolution multiplier) |
| include_top | whether to include the fully-connected layer at the top of the network. |
| weights |
|
| input_tensor | optional Keras tensor (i.e. output of |
| pooling | Optional pooling mode for feature extraction when
|
| classes | optional number of classes to classify images into, only to be
specified if |
| x | input tensor, 4D |
| preds | Tensor encoding a batch of predictions. |
| top | integer, how many top-guesses to return. |
| filepath | File path |
application_mobilenet_v2() and mobilenet_v2_load_model_hdf5() return a
Keras model instance. mobilenet_v2_preprocess_input() returns image input
suitable for feeding into a mobilenet v2 model. mobilenet_v2_decode_predictions()
returns a list of data frames with variables class_name, class_description,
and score (one data frame per sample in batch input).
application_mobilenet