application_resnet50.Rd
ResNet50 model for Keras.
application_resnet50(include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000)
include_top | whether to include the fully-connected layer at the top of the network. |
---|---|
weights |
|
input_tensor | optional Keras tensor to use as image input for the model. |
input_shape | optional shape list, only to be specified if |
pooling | Optional pooling mode for feature extraction when
|
classes | optional number of classes to classify images into, only to be
specified if |
A Keras model instance.
Optionally loads weights pre-trained on ImageNet.
The imagenet_preprocess_input()
function should be used for image
preprocessing.
- Deep Residual Learning for Image Recognition
# NOT RUN { library(keras) # instantiate the model model <- application_resnet50(weights = 'imagenet') # load the image img_path <- "elephant.jpg" img <- image_load(img_path, target_size = c(224,224)) x <- image_to_array(img) # ensure we have a 4d tensor with single element in the batch dimension, # the preprocess the input for prediction using resnet50 x <- array_reshape(x, c(1, dim(x))) x <- imagenet_preprocess_input(x) # make predictions then decode and print them preds <- model %>% predict(x) imagenet_decode_predictions(preds, top = 3)[[1]] # }