application_vgg.Rd
VGG16 and VGG19 models for Keras.
application_vgg16(include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000) application_vgg19(include_top = TRUE, weights = "imagenet", input_tensor = NULL, input_shape = NULL, pooling = NULL, classes = 1000)
include_top | whether to include the 3 fully-connected layers at the top of the network. |
---|---|
weights |
|
input_tensor | optional Keras tensor to use as image input for the model. |
input_shape | optional shape list, only to be specified if |
pooling | Optional pooling mode for feature extraction when
|
classes | optional number of classes to classify images into, only to be
specified if |
Keras model instance.
Optionally loads weights pre-trained on ImageNet.
The imagenet_preprocess_input()
function should be used for image preprocessing.
- Very Deep Convolutional Networks for Large-Scale Image Recognition
# NOT RUN { library(keras) model <- application_vgg16(weights = 'imagenet', include_top = FALSE) img_path <- "elephant.jpg" img <- image_load(img_path, target_size = c(224,224)) x <- image_to_array(img) x <- array_reshape(x, c(1, dim(x))) x <- imagenet_preprocess_input(x) features <- model %>% predict(x) # }