Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1.

layer_batch_normalization(object, axis = -1L, momentum = 0.99,
  epsilon = 0.001, center = TRUE, scale = TRUE,
  beta_initializer = "zeros", gamma_initializer = "ones",
  moving_mean_initializer = "zeros",
  moving_variance_initializer = "ones", beta_regularizer = NULL,
  gamma_regularizer = NULL, beta_constraint = NULL,
  gamma_constraint = NULL, input_shape = NULL,
  batch_input_shape = NULL, batch_size = NULL, dtype = NULL,
  name = NULL, trainable = NULL, weights = NULL)

Arguments

object

Model or layer object

axis

Integer, the axis that should be normalized (typically the features axis). For instance, after a Conv2D layer with data_format="channels_first", set axis=1 in BatchNormalization.

momentum

Momentum for the moving mean and the moving variance.

epsilon

Small float added to variance to avoid dividing by zero.

center

If TRUE, add offset of beta to normalized tensor. If FALSE, beta is ignored.

scale

If TRUE, multiply by gamma. If FALSE, gamma is not used. When the next layer is linear (also e.g. nn.relu), this can be disabled since the scaling will be done by the next layer.

beta_initializer

Initializer for the beta weight.

gamma_initializer

Initializer for the gamma weight.

moving_mean_initializer

Initializer for the moving mean.

moving_variance_initializer

Initializer for the moving variance.

beta_regularizer

Optional regularizer for the beta weight.

gamma_regularizer

Optional regularizer for the gamma weight.

beta_constraint

Optional constraint for the beta weight.

gamma_constraint

Optional constraint for the gamma weight.

input_shape

Dimensionality of the input (integer) not including the samples axis. This argument is required when using this layer as the first layer in a model.

batch_input_shape

Shapes, including the batch size. For instance, batch_input_shape=c(10, 32) indicates that the expected input will be batches of 10 32-dimensional vectors. batch_input_shape=list(NULL, 32) indicates batches of an arbitrary number of 32-dimensional vectors.

batch_size

Fixed batch size for layer

dtype

The data type expected by the input, as a string (float32, float64, int32...)

name

An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.

trainable

Whether the layer weights will be updated during training.

weights

Initial weights for layer.

Input shape

Arbitrary. Use the keyword argument input_shape (list of integers, does not include the samples axis) when using this layer as the first layer in a model.

Output shape

Same shape as input.

References