layer_cropping_3d.RdCropping layer for 3D data (e.g. spatial or spatio-temporal).
layer_cropping_3d(object, cropping = list(c(1L, 1L), c(1L, 1L), c(1L, 1L)), data_format = NULL, batch_size = NULL, name = NULL, trainable = NULL, weights = NULL)
| object | Model or layer object |
|---|---|
| cropping | int, or list of 3 ints, or list of 3 lists of 2 ints.
|
| data_format | A string, one of |
| batch_size | Fixed batch size for layer |
| name | An optional name string for the layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided. |
| trainable | Whether the layer weights will be updated during training. |
| weights | Initial weights for layer. |
5D tensor with shape:
If data_format is "channels_last": (batch, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, depth)
If data_format is "channels_first":
(batch, depth, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)
5D tensor with shape:
If data_format is "channels_last": (batch, first_cropped_axis, second_cropped_axis, third_cropped_axis, depth)
If data_format is "channels_first": (batch, depth, first_cropped_axis, second_cropped_axis, third_cropped_axis)
Other convolutional layers: layer_conv_1d,
layer_conv_2d_transpose,
layer_conv_2d,
layer_conv_3d_transpose,
layer_conv_3d,
layer_conv_lstm_2d,
layer_cropping_1d,
layer_cropping_2d,
layer_depthwise_conv_2d,
layer_separable_conv_1d,
layer_separable_conv_2d,
layer_upsampling_1d,
layer_upsampling_2d,
layer_upsampling_3d,
layer_zero_padding_1d,
layer_zero_padding_2d,
layer_zero_padding_3d