POLPAK
Recursive Polynomials
POLPAK
is a MATLAB library which
evaluates a variety of mathematical functions.
It includes routines to evaluate the
recursively defined polynomial families of
-
Bernoulli
-
Bernstein
-
Cardan
-
Charlier
-
Chebyshev
-
Euler
-
Gegenbauer
-
Hermite
-
Jacobi
-
Krawtchouk
-
Laguerre
-
Legendre
-
Meixner
-
Zernike
A variety of other polynomials and functions have been added.
In a few cases, the new recursive feature of FORTRAN90
has been used (but NOT for the factorial function!)
Licensing:
The computer code and data files described and made available on this web page
are distributed under
the GNU LGPL license.
Languages:
POLPAK is available in
a C version and
a C++ version and
a FORTRAN77 version and
a FORTRAN90 version and
a MATLAB version.
Related Data and Programs:
BERNSTEIN,
a MATLAB library which
evaluates the Bernstein polynomials,
useful for uniform approximation of functions;
CHEBYSHEV_POLYNOMIAL,
a MATLAB library which
evaluates the Chebyshev polynomial and associated functions.
CORDIC,
a MATLAB library which
use the CORDIC method to compute certain elementary functions.
FN,
a MATLAB library which
approximates elementary and special functions using Chebyshev polynomials,
by Wayne Fullerton.
GSL,
a C++ library which
evaluates many special functions.
HERMITE_POLYNOMIAL,
a MATLAB library which
evaluates the physicist's Hermite polynomial, the probabilist's Hermite polynomial,
the Hermite function, and related functions.
JACOBI_POLYNOMIAL,
a MATLAB library which
evaluates the Jacobi polynomial and associated functions.
LAGUERRE_POLYNOMIAL,
a MATLAB library which
evaluates the Laguerre polynomial, the generalized Laguerre polynomial,
and the Laguerre function.
LEGENDRE_POLYNOMIAL,
a MATLAB library which
evaluates the Legendre polynomial and associated functions.
SPHERICAL_HARMONIC,
a MATLAB library which
evaluates spherical harmonic functions.
TEST_VALUES,
a MATLAB library which
contains some sample values of many mathematical functions.
Reference:
-
Milton Abramowitz, Irene Stegun,
Handbook of Mathematical Functions,
National Bureau of Standards, 1964,
ISBN: 0-486-61272-4,
LC: QA47.A34.
-
Robert Banks,
Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics,
Princeton, 1999,
ISBN13: 9780691059471,
LC: QA93.B358.
-
Frank Benford,
The Law of Anomalous Numbers,
Proceedings of the American Philosophical Society,
Volume 78, 1938, pages 551-572.
-
Paul Bratley, Bennett Fox, Linus Schrage,
A Guide to Simulation,
Second Edition,
Springer, 1987,
ISBN: 0387964673,
LC: QA76.9.C65.B73.
-
Chad Brewbaker,
Lonesum (0,1)-matrices and poly-Bernoulli numbers of negative
index,
Master of Science Thesis,
Computer Science Department,
Iowa State University, 2005.
-
William Briggs, Van Emden Henson,
The DFT: An Owner's Manual for the Discrete Fourier Transform,
SIAM, 1995,
ISBN13: 978-0-898713-42-8,
LC: QA403.5.B75.
-
Theodore Chihara,
An Introduction to Orthogonal Polynomials,
Gordon and Breach, 1978,
ISBN: 0677041500,
LC: QA404.5 C44.
-
William Cody,
Rational Chebyshev Approximations for the Error Function,
Mathematics of Computation,
Volume 23, Number 107, July 1969, pages 631-638.
-
Robert Corless, Gaston Gonnet, David Hare, David Jeffrey,
Donald Knuth,
On the Lambert W Function,
Advances in Computational Mathematics,
Volume 5, Number 1, December 1996, pages 329-359.
-
Bennett Fox,
Algorithm 647:
Implementation and Relative Efficiency of Quasirandom
Sequence Generators,
ACM Transactions on Mathematical Software,
Volume 12, Number 4, December 1986, pages 362-376.
-
Walter Gautschi,
Orthogonal Polynomials: Computation and Approximation,
Oxford, 2004,
ISBN: 0-19-850672-4,
LC: QA404.5 G3555.
-
Ralph Hartley,
A More Symmetrical Fourier Analysis Applied to Transmission
Problems,
Proceedings of the Institute of Radio Engineers,
Volume 30, 1942, pages 144-150.
-
Brian Hayes,
The Vibonacci Numbers,
American Scientist,
Volume 87, Number 4, July-August 1999, pages 296-301.
-
Brian Hayes,
Why W?,
American Scientist,
Volume 93, Number 2, March-April 2005, pages 104-108.
-
Ted Hill,
The First Digit Phenomenon,
American Scientist,
Volume 86, Number 4, July/August 1998, pages 358-363.
-
Douglas Hofstadter,
Goedel, Escher, Bach,
Basic Books, 1979,
ISBN: 0465026567,
LC: QA9.8H63.
-
Masanobu Kaneko,
Poly-Bernoulli Numbers,
Journal Theorie des Nombres Bordeaux,
Volume 9, Number 1, 1997, pages 221-228.
-
Cleve Moler,
Trigonometry is a Complex Subject,
MATLAB News and Notes, Summer 1998.
-
Thomas Osler,
Cardan Polynomials and the Reduction of Radicals,
Mathematics Magazine,
Volume 74, Number 1, February 2001, pages 26-32.
-
J Simoes Pereira,
Algorithm 234: Poisson-Charliers Polynomials,
Communications of the ACM,
Volume 7, Number 7, July 1964, page 420.
-
Charles Pinter,
A Book of Abstract Algebra,
Second Edition,
McGraw Hill, 2003,
ISBN: 0072943505,
LC: QA162.P56.
-
Ralph Raimi,
The Peculiar Distribution of First Digits,
Scientific American,
December 1969, pages 109-119.
-
Dennis Stanton, Dennis White,
Constructive Combinatorics,
Springer, 1986,
ISBN: 0387963472,
LC: QA164.S79.
-
Gabor Szego,
Orthogonal Polynomials,
American Mathematical Society, 1992,
ISBN: 0821810235,
LC: QA3.A5.v23.
-
Daniel Velleman, Gregory Call,
Permutations and Combination Locks,
Mathematics Magazine,
Volume 68, Number 4, October 1995, pages 243-253.
-
Divakar Viswanath,
Random Fibonacci sequences and the number 1.13198824,
Mathematics of Computation,
Volume 69, Number 231, July 2000, pages 1131-1155.
-
Michael Waterman,
Introduction to Computational Biology,
Chapman and Hall, 1995,
ISBN: 0412993910,
LC: QH438.4.M33.W38.
-
Eric Weisstein,
CRC Concise Encyclopedia of Mathematics,
CRC Press, 2002,
Second edition,
ISBN: 1584883472,
LC: QA5.W45
-
Stephen Wolfram,
The Mathematica Book,
Fourth Edition,
Cambridge University Press, 1999,
ISBN: 0-521-64314-7,
LC: QA76.95.W65.
-
ML Wolfson, HV Wright,
ACM Algorithm 160: Combinatorial of M Things Taken N at a Time,
Communications of the ACM,
Volume 6, Number 4, April 1963, page 161.
-
Shanjie Zhang, Jianming Jin,
Computation of Special Functions,
Wiley, 1996,
ISBN: 0-471-11963-6,
LC: QA351.C45.
-
Daniel Zwillinger, editor,
CRC Standard Mathematical Tables and Formulae,
30th Edition,
CRC Press, 1996,
ISBN: 0-8493-2479-3,
LC: QA47.M315.
Source Code:
-
agm.m,
computes the arithmetic geometric mean of two numbers;
-
agud.m,
evaluates the inverse Gudermannian function;
-
align_enum.m,
counts the alignments of two sequences of M and N elements;
-
arc_cosine.m,
computes the inverse cosine of a value, with argument truncation;
-
arc_sine.m,
computes the inverse sine of a value, with argument truncation;
-
asinh2.m,
computes the inverse hyperbolic sine of a value;
-
atan4.m,
computes the inverse tangent of the ratio Y / X;
-
atanh2.m,
computes the inverse hyperbolic tangent of a value;
-
bell.m,
evaluates the Bell numbers;
-
bell_values.m,
evaluates some values of the Bell numbers;
-
benford.m,
returns the Benford probability of one or more significant digits;
-
bernoulli_number.m,
returns the Bernoulli numbers;
-
bernoulli_number2.m,
returns the Bernoulli numbers;
-
bernoulli_number3.m,
computes the Bernoulli numbers;
-
bernoulli_number_values.m,
returns some values of the Bernoulli numbers;
-
bernoulli_poly.m,
evaluates a Bernoulli polynomial;
-
bernoulli_poly2.m,
evaluates the Nth Bernoulli polynomial at X;
-
bernstein_poly.m,
evaluates the Bernstein polynomials at a point;
-
bernstein_poly_values.m,
returns some values of the Bernstein polynomials;
-
beta.m,
evaluates the Beta function;
-
beta_values.m,
returns some values of the Beta function;
-
bpab.m,
evaluates the Bernstein polynomials defined on the interval [A,B];
-
cardan.m,
evaluates the Cardan polynomials;
-
cardan_poly_coef.m,
returns the coefficients of a Cardan polynomial;
-
catalan.m,
evaluates the Catalan numbers;
-
catalan_row_next.m,
computes the next row of Catalan numbers;
-
catalan_values.m,
evaluates some values of the Catalan numbers;
-
charlier.m,
evaluates the Charlier polynomials;
-
cheby_t_poly.m,
evaluates the Chebyshev T polynomials;
-
cheby_t_poly_coef.m,
returns the coefficients of the Chebyshev T polynomials;
-
cheby_t_values.m,
returns some values of the Chebyshev T polynomials;
-
cheby_t_poly_zero.m,
returns the zeros of the Chebyshev T polynomials;
-
cheby_u_poly.m,
evaluates the Chebyshev U polynomials;
-
cheby_u_poly_coef.m,
returns the coefficients of the Chebyshev U polynomials;
-
cheby_u_values.m,
returns some values of the Chebyshev U polynomials;
-
cheby_u_poly_zero.m,
returns the zeros of the Chebyshev U polynomials;
-
chebyshev_discrete.m,
evaluates the discrete Chebyshev polynomials;
-
collatz_count.m,
counts the length of the Collatz sequence for a seed of N;
-
collatz_count_max.m,
seeks the maximum Collatz count from 1 to N.
-
collatz_count_values.m,
stores some values of the Collatz count function;
-
comb_row.m,
computes row N of Pascal's triangle;
-
commul.m,
computes a multinomial coefficient;
-
cos_deg.m,
computes the cosine of an angle given in degrees;
-
cos_power_int.m,
returns the value of the integral of the N-th power of
the cosine function;
-
cos_power_int_values.m,
returns some values of the integral of the N-th power of
the cosine function;
-
delannoy.m,
computes the Delannoy numbers;
-
e_constant.m,
returns the value of the base of the natural logarithm system;
-
erf_values.m,
returns some values of the error function;
-
error_f.m,
evaluates the error function ERF(X);
-
error_f_inverse.m,
inverts the error function ERF(X);
-
euler_constant.m,
returns the value of the Euler-Mascheroni constant;
-
euler_number.m,
evaluates the Euler numbers;
-
euler_number2.m,
computes the Euler numbers;
-
euler_number_values.m,
returns some values of the Euler numbers;
-
euler_poly.m,
evaluates the N-th Euler polynomial at X;
-
eulerian.m,
computes the eulerian number E(N,K);
-
f_hofstadter.m,
computes the Hofstadter F function;
-
fibonacci_direct.m,
computes the N-th Fibonacci number directly;
-
fibonacci_floor.m,
computes the largest Fibonacci number less than or equal to N;
-
fibonacci_recursive.m,
computes the first N Fibonacci numbers recursively;
-
g_hofstadter.m,
computes the Hofstadter G function;
-
gamma_values.m,
returns some values of the Gamma function;
-
gamma_log_values.m,
returns some values of the logarithm of the Gamma function;
-
gegenbauer_poly.m,
evaluates the Gegenbauer polynomials at a point;
-
gegenbauer_values.m,
returns some values of the Gegenbauer polynomials;
-
gen_hermite_poly.m,
evaluates the generalized Hermite polynomials;
-
gen_laguerre_poly.m,
evaluates the generalized Laguerre polynomials;
-
gud.m,
evaluates the Gudermannian function;
-
gud_values.m,
returns some values of the Gudermannian function;
-
h_hofstadter.m,
computes the Hofstadter H function;
-
hail.m,
computes the hail function;
-
hermite_poly.m,
evaluates the Hermite polynomials;
-
hermite_poly_coef.m,
evaluates the Hermite polynomial coefficients;
-
hermite_poly_values.m,
returns some values of the Hermite polynomials;
-
hyper_2f1_values.m,
returns some values of the 2F1 hypergeometric function.
-
i4_choose.m,
computes the combinatorial coefficient C(N,K);
-
i4_factor.m,
factors an integer into prime factors;
-
i4_factorial.m,
computes N! for small values of N;
-
i4_factorial_values.m,
returns some values of the (integer) factorial function;
-
i4_factorial2.m,
computes the double factorial function;
-
i4_factorial2_values.m,
returns some values of the double factorial function;
-
i4_is_prime.m,
determines whether an integer is prime;
-
i4_is_triangular.m,
determines whether an integer is triangular;
-
i4_partition_distinct_count_values.m,
computes the value of Q(N);
-
i4_pochhammer.m,
returns the value of I*(I+1)*...*(J-1)*J;
-
i4_swap.m,
swaps two integer values;
-
i4_to_triangle.m,
converts an integer to triangular coordinates;
-
i4_uniform.m,
returns a random integer in a given range;
-
i4mat_print.m,
prints an I4MAT;
-
i4mat_print_some.m,
prints some of an I4MAT;
-
jacobi_poly.m,
evaluates the Jacobi polynomials at a point;
-
jacobi_poly_values.m,
returns some values of the Jacobi polynomials;
-
jacobi_symbol.m,
evaluates the Jacobi symbol (Q/P);
-
krawtchouk.m,
evaluates the Krawtchouk polynomials;
-
laguerre_associated.m,
evaluates the associated Laguerre polynomials L(N,M)(X);
-
laguerre_poly.m,
evaluates the Laguerre polynomials;
-
laguerre_poly_coef.m,
evaluates the Laguerre polynomial coefficients;
-
laguerre_polynomial_values.m,
returns some values of the Laguerre polynomials;
-
legendre_associated.m,
evaluates the associated Legendre functions P(N,M)(X);
-
legendre_associated_normalized.m,
evaluates the associated Legendre functions P(N,M)(X),
normalized for use in spherical harmonic calculations;
-
legendre_associated_values.m,
returns some values of the associated Legendre function;
-
legendre_function_q.m,
evaluates the Legendre functions Q(N)(X);
-
legendre_function_q_values.m,
returns some values of the Legendre Q(N) functions;
-
legendre_poly.m,
evaluates the Legendre polynomials P(N)(X);
-
legendre_poly_coef.m,
evaluates the coefficients of the Legendre polynomials P(N)(X);
-
legendre_poly_values.m,
returns some values of the Legendre polynomials;
-
legendre_symbol.m,
evaluates the Legendre symbol (Q/P);
-
lerch.m,
evaluates the Lerch transcendent function;
-
lerch_values.m,
returns some values of the Lerch transcendent function;
-
lock.m,
returns the number of codes for a lock with N buttons;
-
meixner.m,
evaluates the Meixner polynomials;
-
mertens.m,
returns the value of the Mertens function;
-
mertens_values.m,
returns some tabulated values of the Mertens function;
-
moebius.m,
returns the value of MU(N), the Moebius function of N;
-
moebius_values.m,
returns some tabulated values of the Moebius function;
-
motzkin.m,
returns the Motzkin numbers up to order N;
-
normal_01_cdf_inv.m
inverts the Normal 01 CDF.
-
omega.m,
returns the number of distinct prime divisors of an integer;
-
omega_values.m,
returns some values of the Omega function;
-
partition_count_values.m,
returns some values of the integer partition count;
-
partition_distinct_count_values.m,
returns some values of Q(N);
-
pentagon_num.m,
returns the N-th pentagonal number;
-
phi.m,
returns the number of relatively prime predecessors of an integer;
-
phi_values.m,
returns some values of the Phi function;
-
poly_bernoulli.m,
evaluates the poly-Bernoulli numbers of negative index;
-
poly_coef_count.m,
counts the coefficients in a polynomial of given degree and dimension.
-
prime.m,
returns any of the first MAXPRIME primes;
-
psi_values.m,
returns some values of the Psi function;
-
pyramid_num.m,
returns the N-th pyramidal number;
-
r4_uniform_01.m,
returns a unit pseudorandom R4;
-
r8_acosh.m,
computes the inverse hyperbolic cosine of a value;
-
r8_asinh.m,
computes the inverse hyperbolic sine of a value;
-
r8_atanh.m,
computes the inverse hyperbolic tangent of a value;
-
r8_choose.m,
computes the combinatorial coefficient C(N,K);
-
r8_cot.m,
computes the cotangent of an angle;
-
r8_cot_deg.m,
computes the cotangent of an angle given in degrees;
-
r8_csc.m,
computes the cosecant of an angle;
-
r8_csc_deg.m,
computes the cosecant of an angle given in degrees;
-
r8_epsilon.m,
returns the R8 machine precision;
-
r8_factorial.m,
computes the (real) factorial function;
-
r8_factorial_log.m,
computes the logarithm of the (real) factorial function;
-
r8_factorial_log_values.m,
returns some values of the logarithm of the (real) factorial function;
-
r8_factorial_values.m,
returns some values of the (real) factorial function;
-
r8_gamma.m,
returns the Gamma function;
-
r8_gamma_log.m,
returns the logarithm of the Gamma function;
-
r8_huge.m,
returns a "huge" value;
-
r8_hyper_2f1.m,
evaluates the 2F1 hypergeometric function.
-
r8_nint.m,
rounds an R8 to the nearest integer;
-
r8_pi.m,
returns the value of Pi;
-
r8_psi.m,
returns the Psi function;
-
r8_uniform_01.m,
returns a unit pseudorandom R8;
-
r8poly_degree.m,
returns the degree of a polynomial;
-
r8poly_print.m,
prints a polynomial;
-
r8poly_val_horner.m,
evaluates a polynomial using Horner's method;
-
r8poly_value.m,
evaluates a polynomial using Horner's method;
-
s_len_trim.m,
returns the length of a string to the last nonblank;
-
sec_deg.m,
computes the secant of an angle given in degrees;
-
sigma.m,
returns the value of SIGMA(N), the divisor sum;
-
sigma_values.m,
returns some values of the Sigma function;
-
sin_deg.m,
computes the sin of an angle given in degrees;
-
sin_power_int.m,
returns the value of the integral of the N-th power of
the sine function;
-
sin_power_int_values.m,
returns some values of the integral of the N-th power of
the sine function;
-
slice.m,
maximum number of pieces created by a given number of slices.
-
spherical_harmonic.m,
evaluates the spherical harmonic function;
-
spherical_harmonic_values.m,
returns some values of the spherical harmonic function;
-
stirling1.m,
returns the Stirling numbers of the first kind;
-
stirling2.m,
returns the Stirling numbers of the second kind;
-
tan_deg.m,
returns the tangent of an angle given in degrees;
-
tau.m,
evaluates the Tau function, the number of distinct divisors;
-
tau_values.m,
returns some values of the Tau function;
-
tetrahedron_num.m,
returns the N-th tetrahedral number;
-
timestamp.m,
prints the current YMDHMS date as a timestamp;
-
triangle_num.m,
returns the N-th triangle number;
-
triangle_to_i4.m,
converts a triangular coordinate to an integer;
-
v_hofstadter.m,
computes the Hofstadter V function;
-
vibonacci.m,
computes the Vibonacci numbers;
-
zeckendorf.m,
produces the Zeckendorf decomposition of a positive integer;
-
zernike_poly.m,
evaluates a Zernike polynomial;
-
zernike_poly_coef.m,
returns the coefficients of a Zernike polynomial;
-
zeta.m,
approximates the Riemann Zeta function;
-
zeta_values.m,
returns some stored values of the Riemann Zeta function;
Examples and Tests:
-
polpak_test.m,
runs all the tests;
-
polpak_test_output.txt,
is the output from the tests;
-
polpak_test001.m,
tests AGM;
-
polpak_test002.m,
tests AGUD and GUD;
-
polpak_test003.m,
tests ALIGN_ENUM;
-
polpak_test0035.m,
tests ARC_COSINE;
-
polpak_test004.m,
tests ASINH2;
-
polpak_test005.m,
tests ATAN4;
-
polpak_test006.m,
tests ATANH2;
-
polpak_test007.m,
tests BELL and BELL_VALUES;
-
polpak_test008.m,
tests BENFORD;
-
polpak_test010.m,
tests BERNOULLI_NUMBER and BERNOULLI_NUMBER_VALUES;
-
polpak_test0102.m,
tests BERNOULLI_NUMBER2 and BERNOULLI_NUMBER_VALUES;
-
polpak_test0104.m,
tests BERNOULLI_NUMBER3 and BERNOULLI_NUMBER_VALUES;
-
polpak_test011.m,
tests BERNOULLI_POLY;
-
polpak_test0115.m,
tests BERNOULLI_POLY2;
-
polpak_test012.m,
tests BETA and BETA_VALUES;
-
polpak_test013.m,
tests BERNSTEIN_POLY and BERNSTEIN_POLY_VALUES;
-
polpak_test014.m,
tests BPAB;
-
polpak_test015.m,
tests CARDAN and CARDAN_POLY_COEF;
-
polpak_test016.m,
tests CATALAN and CATALAN_VALUES;
-
polpak_test017.m,
tests CATALAN_ROW;
-
polpak_test0175.m,
tests CHARLIER;
-
polpak_test018.m,
tests CHEBY_T_POLY and CHEBY_T_POLY_VALUES;
-
polpak_test0185.m,
tests CHEBY_T_POLY_ZERO;
-
polpak_test019.m,
tests CHEBY_T_POLY_COEF;
-
polpak_test020.m,
tests CHEBY_U_POLY and CHEBY_U_POLY_VALUES;
-
polpak_test021.m,
tests CHEBY_U_POLY_COEF;
-
polpak_test0215.m,
tests CHEBY_U_POLY_ZERO;
-
polpak_test0216.m,
tests CHEBYSHEV_DISCRETE;
-
polpak_test0217.m,
tests COLLATZ_COUNT and COLLATZ_COUNT_VALUES;
-
polpak_test0218.m,
tests COLLATZ_COUNT_MAX;
-
polpak_test024.m,
tests COMB_ROW;
-
polpak_test0243.m,
tests COS_POWER_INT and COS_POWER_INT_VALUES;
-
polpak_test01155.m,
tests DELANNOY;
-
polpak_test0116.m,
tests ERROR_F and ERF_VALUES;
-
polpak_test0245.m,
tests R8_FACTORIAL and R8_FACTORIAL_VALUES;
-
polpak_test025.m,
tests ERF and ERF_VALUES;
-
polpak_test0255.m,
tests ERF_INVERSE and ERF_VALUES;
-
polpak_test026.m,
tests EULER_NUMBER and EULER_NUMBER_VALUES;
-
polpak_test0265.m,
tests EULER_NUMBER2 and EULER_NUMBER_VALUES;
-
polpak_test028.m,
tests EULER_POLY;
-
polpak_test027.m,
tests EULERIAN;
-
polpak_test029.m,
tests F_HOFSTADTER;
-
polpak_test031.m,
tests FIBONACCI_DIRECT;
-
polpak_test032.m,
tests FIBONACCI_FLOOR;
-
polpak_test033.m,
tests FIBONACCI_RECURSIVE;
-
polpak_test034.m,
tests G_HOFSTADTER;
-
polpak_test036.m,
tests GAMMA_LOG and GAMMA_LOG_VALUES;
-
polpak_test037.m,
tests GEGENBAUER_POLY and GEGENBAUER_VALUES;
-
polpak_test038.m,
tests GUD and GUD_VALUES;
-
polpak_test039.m,
tests HAIL;
-
polpak_test040.m,
tests H_HOFSTADTER;
-
polpak_test041.m,
tests HERMITE_POLY and HERMITE_POLY_VALUES;
-
polpak_test042.m,
tests HERMITE_POLY_COEF;
-
polpak_test0425.m,
tests R8_HYPER_2F1;
-
polpak_test023.m,
tests I4_CHOOSE;
-
polpak_test043.m,
tests I4_FACTORIAL and I4_FACTORIAL_VALUES;
-
polpak_test044.m,
tests I4_FACTORIAL2 and I4_FACTORIAL2_VALUES;
-
polpak_test045.m,
tests PARTITION_COUNT_VALUES;
-
polpak_test046.m,
tests I4_PARTITION_DISTINCT_COUNT and PARTITION_DISTINCT_COUNT_VALUES;;
-
polpak_test047.m,
tests I4_POCHHAMMER;
-
polpak_test048.m,
tests I4_TO_TRIANGLE, TRIANGLE_TO_I4 and I4_IS_TRIANGULAR;
-
polpak_test049.m,
tests JACOBI_POLY and JACOBI_POLY_VALUES;
-
polpak_test050.m,
tests JACOBI_SYMBOL;
-
polpak_test0505.m,
tests KRAWTCHOUK;
-
polpak_test051.m,
tests LAGUERRE_ASSOCIATED;
-
polpak_test052.m,
tests GEN_LAGUERRE_POLY;
-
polpak_test054.m,
tests LAGUERRE_POLY and LAGUERRE_POLYNOMIAL_VALUES;
-
polpak_test055.m,
tests LAGUERRE_POLY_COEF;
-
polpak_test057.m,
tests LEGENDRE_POLY and LEGENDRE_POLY_VALUES;
-
polpak_test058.m,
tests LEGENDRE_POLY_COEF;
-
polpak_test059.m,
tests LEGENDRE_ASSOCIATED and LEGENDRE_ASSOCIATED_VALUES;
-
polpak_test0595.m,
tests LEGENDRE_ASSOCIATED_NORMALIZED and
LEGENDRE_ASSOCIATED_NORMALIZED_VALUES;
-
polpak_test060.m,
tests LEGENDRE_FUNCTION_Q and LEGENDRE_FUNCTION_Q_VALUES;
-
polpak_test061.m,
tests LEGENDRE_SYMBOL;
-
polpak_test0615.m,
tests LERCH and LERCH_VALUES;
-
polpak_test062.m,
tests LOCK;
-
polpak_test0623.m,
tests MEIXNER;
-
polpak_test0625.m,
tests MERTENS and MERTENS_VALUES;
-
polpak_test063.m,
tests MOEBIUS and MOEBIUS_VALUES;
-
polpak_test0635.m,
tests MOTZKIN;
-
polpak_test064.m,
tests OMEGA and OMEGA_VALUES;
-
polpak_test065.m,
tests PENTAGON_NUM;
-
polpak_test066.m,
tests PHI and PHI_VALUES;
-
polpak_test0665.m,
tests POLY_BERNOULLI;
-
polpak_test0667.m,
tests POLY_COEF_COUNT;
-
polpak_test067.m,
tests PYRAMID_NUM;
-
polpak_test0675.m,
tests R8_ACOSH2;
-
polpak_test068.m,
tests R8_FACTORIAL and R8_FACTORIAL_VALUES;
-
polpak_test022.m,
tests R8_CHOOSE;
-
polpak_test0685.m,
tests R8_FACTORIAL_LOG and R8_FACTORIAL_LOG_VALUES;
-
polpak_test06855.m,
tests R8_GAMMA and GAMMA_VALUES;
-
polpak_test06856.m,
tests R8_PSI and PSI_VALUES;
-
polpak_test069.m,
tests SIGMA and SIGMA_VALUES;
-
polpak_test0695.m,
tests SIN_POWER_INT and SIN_POWER_INT_VALUES;
-
polpak_test0696.m,
tests SLICE;
-
polpak_test0697.m,
tests SPHERICAL_HARMONIC and SPHERICAL_HARMONIC_VALUES;
-
polpak_test070.m,
tests STIRLING1;
-
polpak_test071.m,
tests STIRLING2;
-
polpak_test072.m,
tests TAU and TAU_VALUES;
-
polpak_test073.m,
tests TETRAHEDRON_NUM;
-
polpak_test074.m,
tests TRIANGLE_NUM;
-
polpak_test075.m,
tests V_HOFSTADTER;
-
polpak_test076.m,
tests VIBONACCI;
-
polpak_test077.m,
tests ZECKENDORF;
-
polpak_test0773.m,
tests ZERNIKE_POLY;
-
polpak_test0775.m,
tests ZERNIKE_POLY_COEF;
-
polpak_test078.m,
tests ZETA and ZETA_VALUES;
You can go up one level to
the MATLAB source codes.
Last revised on 12 August 2011.