This vignetted describes how simple feature geometries can be manipulated, where manipulations include
POLYGON
to MULTIPOLYGON
)This sections discusses how simple feature geometries of one type can be converted to another. For converting lines to polygons, see also st_polygonize
below.
For single geometries, st_cast
will
LINESTRING
to MULTILINESTRING
Examples of the first three types are
library(sf) ## Linking to GEOS 3.5.0, GDAL 2.2.2, PROJ 4.8.0 suppressPackageStartupMessages(library(dplyr)) st_point(c(1,1)) %>% st_cast("MULTIPOINT") ## MULTIPOINT ((1 1)) st_multipoint(rbind(c(1,1))) %>% st_cast("POINT") ## Warning in st_cast.MULTIPOINT(., "POINT"): point from first coordinate only ## POINT (1 1) st_multipoint(rbind(c(1,1),c(2,2))) %>% st_cast("POINT") ## Warning in st_cast.MULTIPOINT(., "POINT"): point from first coordinate only ## POINT (1 1)
Examples of the fourth type are
st_geometrycollection(list(st_point(c(1,1)))) %>% st_cast("POINT") ## POINT (1 1)
It should be noted here that when reading geometries using st_read
, the type
argument can be used to control the class of the returned geometry:
shp = system.file("shape/nc.shp", package="sf") class(st_geometry(st_read(shp, quiet = TRUE))) ## [1] "sfc_MULTIPOLYGON" "sfc" class(st_geometry(st_read(shp, quiet = TRUE, type = 3))) ## [1] "sfc_POLYGON" "sfc" class(st_geometry(st_read(shp, quiet = TRUE, type = 1))) ## [1] "sfc_GEOMETRY" "sfc"
This option is handled by the GDAL library; in case of failure to convert to the target type, the original types are returned, which in this case is a mix of POLYGON
and MULTIPOLYGON
geometries, leading to a GEOMETRY
as superclass. When we try to read multipolygons as polygons, all secondary rings of multipolygons get lost.
When functions return objects with mixed geometry type (GEOMETRY
), downstream functions such as st_write
may have difficulty handling them. For some of these cases, st_cast
may help modifying their type. For sets of geometry objects (sfc
) and simple feature sets (sf),
st_cast` can be used by specifying the target type, or without specifying it.
ls <- st_linestring(rbind(c(0,0),c(1,1),c(2,1))) mls <- st_multilinestring(list(rbind(c(2,2),c(1,3)), rbind(c(0,0),c(1,1),c(2,1)))) (sfc <- st_sfc(ls,mls)) ## Geometry set for 2 features ## geometry type: GEOMETRY ## dimension: XY ## bbox: xmin: 0 ymin: 0 xmax: 2 ymax: 3 ## CRS: NA ## LINESTRING (0 0, 1 1, 2 1) ## MULTILINESTRING ((2 2, 1 3), (0 0, 1 1, 2 1)) st_cast(sfc, "MULTILINESTRING") ## Geometry set for 2 features ## geometry type: MULTILINESTRING ## dimension: XY ## bbox: xmin: 0 ymin: 0 xmax: 2 ymax: 3 ## CRS: NA ## MULTILINESTRING ((0 0, 1 1, 2 1)) ## MULTILINESTRING ((2 2, 1 3), (0 0, 1 1, 2 1)) sf <- st_sf(a = 5:4, geom = sfc) st_cast(sf, "MULTILINESTRING") ## Simple feature collection with 2 features and 1 field ## geometry type: MULTILINESTRING ## dimension: XY ## bbox: xmin: 0 ymin: 0 xmax: 2 ymax: 3 ## CRS: NA ## a geom ## 1 5 MULTILINESTRING ((0 0, 1 1,... ## 2 4 MULTILINESTRING ((2 2, 1 3)...
When no target type is given, st_cast
tries to be smart for two cases:
GEOMETRY
, and all elements are of identical type, andGEOMETRYCOLLECTION
objects, in which case GEOMETRYCOLLECTION
objects are replaced by their content (which may be a GEOMETRY
mix again)Examples are:
ls <- st_linestring(rbind(c(0,0),c(1,1),c(2,1))) mls1 <- st_multilinestring(list(rbind(c(2,2),c(1,3)), rbind(c(0,0),c(1,1),c(2,1)))) mls2 <- st_multilinestring(list(rbind(c(4,4),c(4,3)), rbind(c(2,2),c(2,1),c(3,1)))) (sfc <- st_sfc(ls,mls1,mls2)) ## Geometry set for 3 features ## geometry type: GEOMETRY ## dimension: XY ## bbox: xmin: 0 ymin: 0 xmax: 4 ymax: 4 ## CRS: NA ## LINESTRING (0 0, 1 1, 2 1) ## MULTILINESTRING ((2 2, 1 3), (0 0, 1 1, 2 1)) ## MULTILINESTRING ((4 4, 4 3), (2 2, 2 1, 3 1)) class(sfc[2:3]) ## [1] "sfc_MULTILINESTRING" "sfc" class(st_cast(sfc[2:3])) ## [1] "sfc_MULTILINESTRING" "sfc" gc1 <- st_geometrycollection(list(st_linestring(rbind(c(0,0),c(1,1),c(2,1))))) gc2 <- st_geometrycollection(list(st_multilinestring(list(rbind(c(2,2),c(1,3)), rbind(c(0,0),c(1,1),c(2,1)))))) gc3 <- st_geometrycollection(list(st_multilinestring(list(rbind(c(4,4),c(4,3)), rbind(c(2,2),c(2,1),c(3,1)))))) (sfc <- st_sfc(gc1,gc2,gc3)) ## Geometry set for 3 features ## geometry type: GEOMETRYCOLLECTION ## dimension: XY ## bbox: xmin: 0 ymin: 0 xmax: 4 ymax: 4 ## CRS: NA ## GEOMETRYCOLLECTION (LINESTRING (0 0, 1 1, 2 1)) ## GEOMETRYCOLLECTION (MULTILINESTRING ((2 2, 1 3)... ## GEOMETRYCOLLECTION (MULTILINESTRING ((4 4, 4 3)... class(st_cast(sfc)) ## [1] "sfc_GEOMETRY" "sfc" class(st_cast(st_cast(sfc), "MULTILINESTRING")) ## [1] "sfc_MULTILINESTRING" "sfc"
Affine transformations are transformations of the type \(f(x) = xA + b\), where matrix \(A\) is used to flatten, scale and/or rotate, and \(b\) to translate \(x\). Low-level examples are:
(p = st_point(c(0,2))) ## POINT (0 2) p + 1 ## POINT (1 3) p + c(1,2) ## POINT (1 4) p + p ## POINT (0 4) p * p ## POINT (0 4) rot = function(a) matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2) p * rot(pi/4) ## POINT (1.414214 1.414214) p * rot(pi/2) ## POINT (2 1.224647e-16) p * rot(pi) ## POINT (2.449294e-16 -2)
Just to make the point, we can for instance rotate the counties of North Carolina 90 degrees clockwise around their centroid, and shrink them to 75% of their original size:
nc = st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE) ncg = st_geometry(nc) plot(ncg, border = 'grey') cntrd = st_centroid(ncg) ## Warning in st_centroid.sfc(ncg): st_centroid does not give correct centroids for ## longitude/latitude data ncg2 = (ncg - cntrd) * rot(pi/2) * .75 + cntrd plot(ncg2, add = TRUE) plot(cntrd, col = 'red', add = TRUE, cex = .5)
The coordinate reference system of objects of class sf
or sfc
is obtained by st_crs
, and replaced by st_crs<-
:
library(sf) geom = st_sfc(st_point(c(0,1)), st_point(c(11,12))) s = st_sf(a = 15:16, geometry = geom) st_crs(s) ## Coordinate Reference System: NA s1 = s st_crs(s1) <- 4326 st_crs(s1) ## Coordinate Reference System: ## User input: EPSG:4326 ## wkt: ## GEOGCS["WGS 84", ## DATUM["WGS_1984", ## SPHEROID["WGS 84",6378137,298.257223563, ## AUTHORITY["EPSG","7030"]], ## AUTHORITY["EPSG","6326"]], ## PRIMEM["Greenwich",0, ## AUTHORITY["EPSG","8901"]], ## UNIT["degree",0.0174532925199433, ## AUTHORITY["EPSG","9122"]], ## AUTHORITY["EPSG","4326"]] s2 = s st_crs(s2) <- "+proj=longlat +datum=WGS84" all.equal(s1, s2) ## [1] "Component \"geometry\": Attributes: < Component \"crs\": Component \"input\": 1 string mismatch >"
an alternative, more pipe-friendly version of st_crs<-
is
s1 %>% st_set_crs(4326) ## Simple feature collection with 2 features and 1 field ## geometry type: POINT ## dimension: XY ## bbox: xmin: 0 ymin: 1 xmax: 11 ymax: 12 ## CRS: EPSG:4326 ## a geometry ## 1 15 POINT (0 1) ## 2 16 POINT (11 12)
If we change the coordinate reference system from one non-missing value into another non-missing value, the crs is is changed without modifying any coordinates, but a warning is issued that this did not reproject values:
s3 <- s1 %>% st_set_crs(4326) %>% st_set_crs(3857) ## Warning: st_crs<- : replacing crs does not reproject data; use st_transform for ## that
A cleaner way to do this that better expresses intention and does not generate this warning is to first wipe the CRS by assigning it a missing value, and then setting it to the intended value.
s3 <- s1 %>% st_set_crs(NA) %>% st_set_crs(3857)
To carry out a coordinate conversion or transformation, we use st_transform
s3 <- s1 %>% st_transform(3857) s3 ## Simple feature collection with 2 features and 1 field ## geometry type: POINT ## dimension: XY ## bbox: xmin: 0 ymin: 111325.1 xmax: 1224514 ymax: 1345708 ## CRS: EPSG:3857 ## a geometry ## 1 15 POINT (0 111325.1) ## 2 16 POINT (1224514 1345708)
for which we see that coordinates are actually modified (projected).
All geometrical operations st_op(x)
or st_op2(x,y)
work both for sf
objects as well as sfc
objects x
and y
; since the operations work on the geometries, the non-geometries parts of an sf
object are simply discarded. Also, all binary operations st_op2(x,y)
called with a single argument, as st_op2(x)
, are handled as st_op2(x,x)
.
We will illustrate the geometrical operations on a very simple dataset:
b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1)))) b1 = b0 + 2 b2 = b0 + c(-0.2, 2) x = st_sfc(b0, b1, b2) a0 = b0 * 0.8 a1 = a0 * 0.5 + c(2, 0.7) a2 = a0 + 1 a3 = b0 * 0.5 + c(2, -0.5) y = st_sfc(a0,a1,a2,a3) plot(x, border = 'red') plot(y, border = 'green', add = TRUE)
st_is_valid
returns whether polygon geometries are topologically valid:
b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1)))) b1 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(0,-1), c(-1,-1)))) st_is_valid(st_sfc(b0,b1)) ## [1] TRUE FALSE
and st_is_simple
whether line geometries are simple:
s = st_sfc(st_linestring(rbind(c(0,0), c(1,1))), st_linestring(rbind(c(0,0), c(1,1),c(0,1),c(1,0)))) st_is_simple(s) ## [1] TRUE FALSE
st_area
returns the area of polygon geometries, st_length
the length of line geometries:
st_area(x) ## [1] 4 4 4 st_area(st_sfc(st_point(c(0,0)))) ## [1] 0 st_length(st_sfc(st_linestring(rbind(c(0,0),c(1,1),c(1,2))), st_linestring(rbind(c(0,0),c(1,0))))) ## [1] 2.414214 1.000000 st_length(st_sfc(st_multilinestring(list(rbind(c(0,0),c(1,1),c(1,2))),rbind(c(0,0),c(1,0))))) # ignores 2nd part! ## [1] 2.414214
st_distance
computes the shortest distance matrix between geometries; this is a dense matrix:
st_distance(x,y) ## [,1] [,2] [,3] [,4] ## [1,] 0.0000000 0.6 0 0.500000 ## [2,] 0.2828427 0.0 0 1.000000 ## [3,] 0.2000000 0.8 0 1.220656
st_relate
returns a dense character matrix with the DE9-IM relationships between each pair of geometries:
st_relate(x,y) ## [,1] [,2] [,3] [,4] ## [1,] "212FF1FF2" "FF2FF1212" "212101212" "FF2FF1212" ## [2,] "FF2FF1212" "212101212" "212101212" "FF2FF1212" ## [3,] "FF2FF1212" "FF2FF1212" "212101212" "FF2FF1212"
element [i,j] of this matrix has nine characters, referring to relationship between x[i] and y[j], encoded as \(I_xI_y,I_xB_y,I_xE_y,B_xI_y,B_xB_y,B_xE_y,E_xI_y,E_xB_y,E_xE_y\) where \(I\) refers to interior, \(B\) to boundary, and \(E\) to exterior, and e.g. \(B_xI_y\) the dimensionality of the intersection of the the boundary \(B_x\) of x[i] and the interior \(I_y\) of y[j], which is one of {0,1,2,F}, indicating zero-, one-, two-dimension intersection, and (F) no intersection, respectively.
Binary logical operations return either a sparse matrix
st_intersects(x,y) ## Sparse geometry binary predicate list of length 3, where the predicate was `intersects' ## 1: 1, 3 ## 2: 2, 3 ## 3: 3
or a dense matrix
st_intersects(x, x, sparse = FALSE) ## [,1] [,2] [,3] ## [1,] TRUE TRUE TRUE ## [2,] TRUE TRUE FALSE ## [3,] TRUE FALSE TRUE st_intersects(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] TRUE FALSE TRUE FALSE ## [2,] FALSE TRUE TRUE FALSE ## [3,] FALSE FALSE TRUE FALSE
where list element i
of a sparse matrix contains the indices of the TRUE
elements in row i
of the the dense matrix. For large geometry sets, dense matrices take up a lot of memory and are mostly filled with FALSE
values, hence the default is to return a sparse matrix.
st_intersects
returns for every geometry pair whether they intersect (dense matrix), or which elements intersect (sparse). Note that the function st_intersection
in this package returns a geometry for the intersection instead of logicals as in st_intersects
(see the next section of this vignette).
Other binary predicates include (using sparse for readability):
st_disjoint(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE TRUE FALSE TRUE ## [2,] TRUE FALSE FALSE TRUE ## [3,] TRUE TRUE FALSE TRUE st_touches(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE st_crosses(s, s, sparse = FALSE) ## [,1] [,2] ## [1,] FALSE FALSE ## [2,] FALSE FALSE st_within(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE st_contains(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] TRUE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE st_overlaps(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE FALSE TRUE FALSE ## [2,] FALSE TRUE TRUE FALSE ## [3,] FALSE FALSE TRUE FALSE st_equals(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE st_covers(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] TRUE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE st_covered_by(x, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE st_covered_by(y, y, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] TRUE FALSE FALSE FALSE ## [2,] FALSE TRUE FALSE FALSE ## [3,] FALSE FALSE TRUE FALSE ## [4,] FALSE FALSE FALSE TRUE st_equals_exact(x, y,0.001, sparse = FALSE) ## [,1] [,2] [,3] [,4] ## [1,] FALSE FALSE FALSE FALSE ## [2,] FALSE FALSE FALSE FALSE ## [3,] FALSE FALSE FALSE FALSE
par(mfrow=c(1,2), mar = rep(0,4)) plot(st_buffer(u, 0.2)) plot(u, border = 'red', add = TRUE) plot(st_buffer(u, 0.2), border = 'grey') plot(u, border = 'red', add = TRUE) plot(st_buffer(u, -0.2), add = TRUE)
plot(st_boundary(x))
par(mfrow = c(1:2)) plot(st_convex_hull(x)) plot(st_convex_hull(u))
par(mfrow=c(1,2)) plot(x) plot(st_centroid(x), add = TRUE, col = 'red') plot(x) plot(st_centroid(u), add = TRUE, col = 'red')
The intersection of two geometries is the geometry covered by both; it is obtained by st_intersection
:
Note that the function st_intersects
returns a logical matrix indicating whether each geometry pair intersects (see the previous section in this vignette).
To get everything but the intersection, use st_difference
or st_sym_difference`:
par(mfrow=c(2,2), mar = c(0,0,1,0)) plot(x, col = '#ff333388'); plot(y, add=TRUE, col='#33ff3388') title("x: red, y: green") plot(x, border = 'grey') plot(st_difference(st_union(x),st_union(y)), col = 'lightblue', add = TRUE) title("difference(x,y)") plot(x, border = 'grey') plot(st_difference(st_union(y),st_union(x)), col = 'lightblue', add = TRUE) title("difference(y,x)") plot(x, border = 'grey') plot(st_sym_difference(st_union(y),st_union(x)), col = 'lightblue', add = TRUE) title("sym_difference(x,y)")
Function st_segmentize
adds points to straight line sections of a lines or polygon object:
par(mfrow=c(1,3),mar=c(1,1,0,0)) pts = rbind(c(0,0),c(1,0),c(2,1),c(3,1)) ls = st_linestring(pts) plot(ls) points(pts) ls.seg = st_segmentize(ls, 0.3) plot(ls.seg) pts = ls.seg points(pts) pol = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0)))) pol.seg = st_segmentize(pol, 0.3) plot(pol.seg, col = 'grey') points(pol.seg[[1]])
Function st_polygonize
polygonizes a multilinestring, as far as the points form a closed polygon: