lstm_seq2seq.Rmd
Sequence to sequence example in Keras (character-level).
This script demonstrates how to implement a basic character-level sequence-to-sequence model. We apply it to translating short English sentences into short French sentences, character-by-character. Note that it is fairly unusual to do character-level machine translation, as word-level models are more common in this domain.
Algorithm
targets[t+1...]
given targets[...t]
, conditioned on the input sequence.Data download
English to French sentence pairs. http://www.manythings.org/anki/fra-eng.zip
Lots of neat sentence pairs datasets can be found at: http://www.manythings.org/anki/
References
library(keras)
library(data.table)
batch_size = 64 # Batch size for training.
epochs = 100 # Number of epochs to train for.
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.
## Path to the data txt file on disk.
data_path = 'fra.txt'
text <- fread(data_path, sep="\t", header=FALSE, nrows=num_samples)
## Vectorize the data.
input_texts <- text[[1]]
target_texts <- paste0('\t',text[[2]],'\n')
input_texts <- lapply( input_texts, function(s) strsplit(s, split="")[[1]])
target_texts <- lapply( target_texts, function(s) strsplit(s, split="")[[1]])
input_characters <- sort(unique(unlist(input_texts)))
target_characters <- sort(unique(unlist(target_texts)))
num_encoder_tokens <- length(input_characters)
num_decoder_tokens <- length(target_characters)
max_encoder_seq_length <- max(sapply(input_texts,length))
max_decoder_seq_length <- max(sapply(target_texts,length))
cat('Number of samples:', length(input_texts),'\n')
cat('Number of unique input tokens:', num_encoder_tokens,'\n')
cat('Number of unique output tokens:', num_decoder_tokens,'\n')
cat('Max sequence length for inputs:', max_encoder_seq_length,'\n')
cat('Max sequence length for outputs:', max_decoder_seq_length,'\n')
input_token_index <- 1:length(input_characters)
names(input_token_index) <- input_characters
target_token_index <- 1:length(target_characters)
names(target_token_index) <- target_characters
encoder_input_data <- array(
0, dim = c(length(input_texts), max_encoder_seq_length, num_encoder_tokens))
decoder_input_data <- array(
0, dim = c(length(input_texts), max_decoder_seq_length, num_decoder_tokens))
decoder_target_data <- array(
0, dim = c(length(input_texts), max_decoder_seq_length, num_decoder_tokens))
for(i in 1:length(input_texts)) {
d1 <- sapply( input_characters, function(x) { as.integer(x == input_texts[[i]]) })
encoder_input_data[i,1:nrow(d1),] <- d1
d2 <- sapply( target_characters, function(x) { as.integer(x == target_texts[[i]]) })
decoder_input_data[i,1:nrow(d2),] <- d2
d3 <- sapply( target_characters, function(x) { as.integer(x == target_texts[[i]][-1]) })
decoder_target_data[i,1:nrow(d3),] <- d3
}
## Define an input sequence and process it.
encoder_inputs <- layer_input(shape=list(NULL,num_encoder_tokens))
encoder <- layer_lstm(units=latent_dim, return_state=TRUE)
encoder_results <- encoder_inputs %>% encoder
## We discard `encoder_outputs` and only keep the states.
encoder_states <- encoder_results[2:3]
## Set up the decoder, using `encoder_states` as initial state.
decoder_inputs <- layer_input(shape=list(NULL, num_decoder_tokens))
## We set up our decoder to return full output sequences,
## and to return internal states as well. We don't use the
## return states in the training model, but we will use them in inference.
decoder_lstm <- layer_lstm(units=latent_dim, return_sequences=TRUE,
return_state=TRUE, stateful=FALSE)
decoder_results <- decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense <- layer_dense(units=num_decoder_tokens, activation='softmax')
decoder_outputs <- decoder_dense(decoder_results[[1]])
## Define the model that will turn
## `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model <- keras_model( inputs = list(encoder_inputs, decoder_inputs),
outputs = decoder_outputs )
## Compile model
model %>% compile(optimizer='rmsprop', loss='categorical_crossentropy')
## Run model
model %>% fit( list(encoder_input_data, decoder_input_data), decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2)
## Save model
save_model_hdf5(model,'s2s.h5')
save_model_weights_hdf5(model,'s2s-wt.h5')
##model <- load_model_hdf5('s2s.h5')
##load_model_weights_hdf5(model,'s2s-wt.h5')
## Here's the drill:
## 1) encode input and retrieve initial decoder state
## 2) run one step of decoder with this initial state
## and a "start of sequence" token as target.
## Output will be the next target token
## 3) Repeat with the current target token and current states
## Define sampling models
encoder_model <- keras_model(encoder_inputs, encoder_states)
decoder_state_input_h <- layer_input(shape=latent_dim)
decoder_state_input_c <- layer_input(shape=latent_dim)
decoder_states_inputs <- c(decoder_state_input_h, decoder_state_input_c)
decoder_results <- decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states <- decoder_results[2:3]
decoder_outputs <- decoder_dense(decoder_results[[1]])
decoder_model <- keras_model(
inputs = c(decoder_inputs, decoder_states_inputs),
outputs = c(decoder_outputs, decoder_states))
## Reverse-lookup token index to decode sequences back to
## something readable.
reverse_input_char_index <- as.character(input_characters)
reverse_target_char_index <- as.character(target_characters)
decode_sequence <- function(input_seq) {
## Encode the input as state vectors.
states_value <- predict(encoder_model, input_seq)
## Generate empty target sequence of length 1.
target_seq <- array(0, dim=c(1, 1, num_decoder_tokens))
## Populate the first character of target sequence with the start character.
target_seq[1, 1, target_token_index['\t']] <- 1.
## Sampling loop for a batch of sequences
## (to simplify, here we assume a batch of size 1).
stop_condition = FALSE
decoded_sentence = ''
maxiter = max_decoder_seq_length
niter = 1
while (!stop_condition && niter < maxiter) {
## output_tokens, h, c = decoder_model.predict([target_seq] + states_value)
decoder_predict <- predict(decoder_model, c(list(target_seq), states_value))
output_tokens <- decoder_predict[[1]]
## Sample a token
sampled_token_index <- which.max(output_tokens[1, 1, ])
sampled_char <- reverse_target_char_index[sampled_token_index]
decoded_sentence <- paste0(decoded_sentence, sampled_char)
decoded_sentence
## Exit condition: either hit max length
## or find stop character.
if (sampled_char == '\n' ||
length(decoded_sentence) > max_decoder_seq_length) {
stop_condition = TRUE
}
## Update the target sequence (of length 1).
## target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[1, 1, ] <- 0
target_seq[1, 1, sampled_token_index] <- 1.
## Update states
h <- decoder_predict[[2]]
c <- decoder_predict[[3]]
states_value = list(h, c)
niter <- niter + 1
}
return(decoded_sentence)
}
for (seq_index in 1:100) {
## Take one sequence (part of the training test)
## for trying out decoding.
input_seq = encoder_input_data[seq_index,,,drop=FALSE]
decoded_sentence = decode_sequence(input_seq)
target_sentence <- gsub("\t|\n","",paste(target_texts[[seq_index]],collapse=''))
input_sentence <- paste(input_texts[[seq_index]],collapse='')
cat('-\n')
cat('Input sentence : ', input_sentence,'\n')
cat('Target sentence : ', target_sentence,'\n')
cat('Decoded sentence: ', decoded_sentence,'\n')
}