keras_model.RdA model is a directed acyclic graph of layers.
keras_model(inputs, outputs = NULL)
| inputs | Input layer |
|---|---|
| outputs | Output layer |
Other model functions: compile.keras.engine.training.Model,
evaluate.keras.engine.training.Model,
evaluate_generator,
fit.keras.engine.training.Model,
fit_generator, get_config,
get_layer,
keras_model_sequential,
multi_gpu_model, pop_layer,
predict.keras.engine.training.Model,
predict_generator,
predict_on_batch,
predict_proba,
summary.keras.engine.training.Model,
train_on_batch
# NOT RUN { library(keras) # input layer inputs <- layer_input(shape = c(784)) # outputs compose input + dense layers predictions <- inputs %>% layer_dense(units = 64, activation = 'relu') %>% layer_dense(units = 64, activation = 'relu') %>% layer_dense(units = 10, activation = 'softmax') # create and compile model model <- keras_model(inputs = inputs, outputs = predictions) model %>% compile( optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = c('accuracy') ) # }