keras_model_sequential.RdKeras Model composed of a linear stack of layers
keras_model_sequential(layers = NULL, name = NULL)
| layers | List of layers to add to the model |
|---|---|
| name | Name of model |
The first layer passed to a Sequential model should have a defined input
shape. What that means is that it should have received an input_shape or
batch_input_shape argument, or for some type of layers (recurrent,
Dense...) an input_dim argument.
Other model functions: compile.keras.engine.training.Model,
evaluate.keras.engine.training.Model,
evaluate_generator,
fit.keras.engine.training.Model,
fit_generator, get_config,
get_layer, keras_model,
multi_gpu_model, pop_layer,
predict.keras.engine.training.Model,
predict_generator,
predict_on_batch,
predict_proba,
summary.keras.engine.training.Model,
train_on_batch
# NOT RUN { library(keras) model <- keras_model_sequential() model %>% layer_dense(units = 32, input_shape = c(784)) %>% layer_activation('relu') %>% layer_dense(units = 10) %>% layer_activation('softmax') model %>% compile( optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = c('accuracy') ) # }