public
class
Matrix
extends Object
java.lang.Object | |
↳ | android.graphics.Matrix |
The Matrix class holds a 3x3 matrix for transforming coordinates.
Nested classes | |
---|---|
enum |
Matrix.ScaleToFit
Controlls how the src rect should align into the dst rect for setRectToRect(). |
Constants | |
---|---|
int |
MPERSP_0
|
int |
MPERSP_1
|
int |
MPERSP_2
|
int |
MSCALE_X
|
int |
MSCALE_Y
|
int |
MSKEW_X
|
int |
MSKEW_Y
|
int |
MTRANS_X
|
int |
MTRANS_Y
|
Public constructors | |
---|---|
Matrix()
Create an identity matrix |
|
Matrix(Matrix src)
Create a matrix that is a (deep) copy of src |
Public methods | |
---|---|
boolean
|
equals(Object obj)
Returns true iff obj is a Matrix and its values equal our values. |
void
|
getValues(float[] values)
Copy 9 values from the matrix into the array. |
int
|
hashCode()
Returns a hash code value for the object. |
boolean
|
invert(Matrix inverse)
If this matrix can be inverted, return true and if inverse is not null, set inverse to be the inverse of this matrix. |
boolean
|
isAffine()
Gets whether this matrix is affine. |
boolean
|
isIdentity()
Returns true if the matrix is identity. |
void
|
mapPoints(float[] dst, int dstIndex, float[] src, int srcIndex, int pointCount)
Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst. |
void
|
mapPoints(float[] dst, float[] src)
Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst. |
void
|
mapPoints(float[] pts)
Apply this matrix to the array of 2D points, and write the transformed points back into the array |
float
|
mapRadius(float radius)
Return the mean radius of a circle after it has been mapped by this matrix. |
boolean
|
mapRect(RectF rect)
Apply this matrix to the rectangle, and write the transformed rectangle back into it. |
boolean
|
mapRect(RectF dst, RectF src)
Apply this matrix to the src rectangle, and write the transformed rectangle into dst. |
void
|
mapVectors(float[] vecs)
Apply this matrix to the array of 2D vectors, and write the transformed vectors back into the array. |
void
|
mapVectors(float[] dst, int dstIndex, float[] src, int srcIndex, int vectorCount)
Apply this matrix to the array of 2D vectors specified by src, and write the transformed vectors into the array of vectors specified by dst. |
void
|
mapVectors(float[] dst, float[] src)
Apply this matrix to the array of 2D vectors specified by src, and write the transformed vectors into the array of vectors specified by dst. |
boolean
|
postConcat(Matrix other)
Postconcats the matrix with the specified matrix. |
boolean
|
postRotate(float degrees, float px, float py)
Postconcats the matrix with the specified rotation. |
boolean
|
postRotate(float degrees)
Postconcats the matrix with the specified rotation. |
boolean
|
postScale(float sx, float sy, float px, float py)
Postconcats the matrix with the specified scale. |
boolean
|
postScale(float sx, float sy)
Postconcats the matrix with the specified scale. |
boolean
|
postSkew(float kx, float ky)
Postconcats the matrix with the specified skew. |
boolean
|
postSkew(float kx, float ky, float px, float py)
Postconcats the matrix with the specified skew. |
boolean
|
postTranslate(float dx, float dy)
Postconcats the matrix with the specified translation. |
boolean
|
preConcat(Matrix other)
Preconcats the matrix with the specified matrix. |
boolean
|
preRotate(float degrees)
Preconcats the matrix with the specified rotation. |
boolean
|
preRotate(float degrees, float px, float py)
Preconcats the matrix with the specified rotation. |
boolean
|
preScale(float sx, float sy)
Preconcats the matrix with the specified scale. |
boolean
|
preScale(float sx, float sy, float px, float py)
Preconcats the matrix with the specified scale. |
boolean
|
preSkew(float kx, float ky)
Preconcats the matrix with the specified skew. |
boolean
|
preSkew(float kx, float ky, float px, float py)
Preconcats the matrix with the specified skew. |
boolean
|
preTranslate(float dx, float dy)
Preconcats the matrix with the specified translation. |
boolean
|
rectStaysRect()
Returns true if will map a rectangle to another rectangle. |
void
|
reset()
Set the matrix to identity |
void
|
set(Matrix src)
(deep) copy the src matrix into this matrix. |
boolean
|
setConcat(Matrix a, Matrix b)
Set the matrix to the concatenation of the two specified matrices and return true. |
boolean
|
setPolyToPoly(float[] src, int srcIndex, float[] dst, int dstIndex, int pointCount)
Set the matrix such that the specified src points would map to the specified dst points. |
boolean
|
setRectToRect(RectF src, RectF dst, Matrix.ScaleToFit stf)
Set the matrix to the scale and translate values that map the source rectangle to the destination rectangle, returning true if the the result can be represented. |
void
|
setRotate(float degrees, float px, float py)
Set the matrix to rotate by the specified number of degrees, with a pivot point at (px, py). |
void
|
setRotate(float degrees)
Set the matrix to rotate about (0,0) by the specified number of degrees. |
void
|
setScale(float sx, float sy)
Set the matrix to scale by sx and sy. |
void
|
setScale(float sx, float sy, float px, float py)
Set the matrix to scale by sx and sy, with a pivot point at (px, py). |
void
|
setSinCos(float sinValue, float cosValue, float px, float py)
Set the matrix to rotate by the specified sine and cosine values, with a pivot point at (px, py). |
void
|
setSinCos(float sinValue, float cosValue)
Set the matrix to rotate by the specified sine and cosine values. |
void
|
setSkew(float kx, float ky)
Set the matrix to skew by sx and sy. |
void
|
setSkew(float kx, float ky, float px, float py)
Set the matrix to skew by sx and sy, with a pivot point at (px, py). |
void
|
setTranslate(float dx, float dy)
Set the matrix to translate by (dx, dy). |
void
|
setValues(float[] values)
Copy 9 values from the array into the matrix. |
String
|
toShortString()
|
String
|
toString()
Returns a string representation of the object. |
Protected methods | |
---|---|
void
|
finalize()
Called by the garbage collector on an object when garbage collection determines that there are no more references to the object. |
Inherited methods | |
---|---|
From
class
java.lang.Object
|
Matrix (Matrix src)
Create a matrix that is a (deep) copy of src
Parameters | |
---|---|
src |
Matrix :
The matrix to copy into this matrix
|
boolean equals (Object obj)
Returns true iff obj is a Matrix and its values equal our values.
Parameters | |
---|---|
obj |
Object :
the reference object with which to compare. |
Returns | |
---|---|
boolean |
true if this object is the same as the obj
argument; false otherwise. |
void getValues (float[] values)
Copy 9 values from the matrix into the array.
Parameters | |
---|---|
values |
float
|
int hashCode ()
Returns a hash code value for the object. This method is
supported for the benefit of hash tables such as those provided by
HashMap
.
The general contract of hashCode
is:
hashCode
method
must consistently return the same integer, provided no information
used in equals
comparisons on the object is modified.
This integer need not remain consistent from one execution of an
application to another execution of the same application.
equals(Object)
method, then calling the hashCode
method on each of
the two objects must produce the same integer result.
equals(java.lang.Object)
method, then calling the hashCode
method on each of the
two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results
for unequal objects may improve the performance of hash tables.
As much as is reasonably practical, the hashCode method defined by
class Object
does return distinct integers for distinct
objects. (This is typically implemented by converting the internal
address of the object into an integer, but this implementation
technique is not required by the
JavaTM programming language.)
Returns | |
---|---|
int |
a hash code value for this object. |
boolean invert (Matrix inverse)
If this matrix can be inverted, return true and if inverse is not null, set inverse to be the inverse of this matrix. If this matrix cannot be inverted, ignore inverse and return false.
Parameters | |
---|---|
inverse |
Matrix
|
Returns | |
---|---|
boolean |
boolean isAffine ()
Gets whether this matrix is affine. An affine matrix preserves straight lines and has no perspective.
Returns | |
---|---|
boolean |
Whether the matrix is affine. |
boolean isIdentity ()
Returns true if the matrix is identity. This maybe faster than testing if (getType() == 0)
Returns | |
---|---|
boolean |
void mapPoints (float[] dst, int dstIndex, float[] src, int srcIndex, int pointCount)
Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst. The two arrays represent their "points" as pairs of floats [x, y].
Parameters | |
---|---|
dst |
float :
The array of dst points (x,y pairs) |
dstIndex |
int :
The index of the first [x,y] pair of dst floats |
src |
float :
The array of src points (x,y pairs) |
srcIndex |
int :
The index of the first [x,y] pair of src floats |
pointCount |
int :
The number of points (x,y pairs) to transform
|
void mapPoints (float[] dst, float[] src)
Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst. The two arrays represent their "points" as pairs of floats [x, y].
Parameters | |
---|---|
dst |
float :
The array of dst points (x,y pairs) |
src |
float :
The array of src points (x,y pairs)
|
void mapPoints (float[] pts)
Apply this matrix to the array of 2D points, and write the transformed points back into the array
Parameters | |
---|---|
pts |
float :
The array [x0, y0, x1, y1, ...] of points to transform.
|
float mapRadius (float radius)
Return the mean radius of a circle after it has been mapped by this matrix. NOTE: in perspective this value assumes the circle has its center at the origin.
Parameters | |
---|---|
radius |
float
|
Returns | |
---|---|
float |
boolean mapRect (RectF rect)
Apply this matrix to the rectangle, and write the transformed rectangle back into it. This is accomplished by transforming the 4 corners of rect, and then setting it to the bounds of those points
Parameters | |
---|---|
rect |
RectF :
The rectangle to transform. |
Returns | |
---|---|
boolean |
the result of calling rectStaysRect() |
boolean mapRect (RectF dst, RectF src)
Apply this matrix to the src rectangle, and write the transformed rectangle into dst. This is accomplished by transforming the 4 corners of src, and then setting dst to the bounds of those points.
Parameters | |
---|---|
dst |
RectF :
Where the transformed rectangle is written. |
src |
RectF :
The original rectangle to be transformed. |
Returns | |
---|---|
boolean |
the result of calling rectStaysRect() |
void mapVectors (float[] vecs)
Apply this matrix to the array of 2D vectors, and write the transformed
vectors back into the array.
Note: this method does not apply the translation associated with the matrix. Use
mapPoints(float[])
if you want the translation to be applied.
Parameters | |
---|---|
vecs |
float :
The array [x0, y0, x1, y1, ...] of vectors to transform.
|
void mapVectors (float[] dst, int dstIndex, float[] src, int srcIndex, int vectorCount)
Apply this matrix to the array of 2D vectors specified by src, and write
the transformed vectors into the array of vectors specified by dst. The
two arrays represent their "vectors" as pairs of floats [x, y].
Note: this method does not apply the translation associated with the matrix. Use
mapPoints(float[], int, float[], int, int)
if you want the translation
to be applied.
Parameters | |
---|---|
dst |
float :
The array of dst vectors (x,y pairs) |
dstIndex |
int :
The index of the first [x,y] pair of dst floats |
src |
float :
The array of src vectors (x,y pairs) |
srcIndex |
int :
The index of the first [x,y] pair of src floats |
vectorCount |
int :
The number of vectors (x,y pairs) to transform
|
void mapVectors (float[] dst, float[] src)
Apply this matrix to the array of 2D vectors specified by src, and write
the transformed vectors into the array of vectors specified by dst. The
two arrays represent their "vectors" as pairs of floats [x, y].
Note: this method does not apply the translation associated with the matrix. Use
mapPoints(float[], float[])
if you want the translation to be applied.
Parameters | |
---|---|
dst |
float :
The array of dst vectors (x,y pairs) |
src |
float :
The array of src vectors (x,y pairs)
|
boolean postConcat (Matrix other)
Postconcats the matrix with the specified matrix. M' = other * M
Parameters | |
---|---|
other |
Matrix
|
Returns | |
---|---|
boolean |
boolean postRotate (float degrees, float px, float py)
Postconcats the matrix with the specified rotation. M' = R(degrees, px, py) * M
Parameters | |
---|---|
degrees |
float
|
px |
float
|
py |
float
|
Returns | |
---|---|
boolean |
boolean postRotate (float degrees)
Postconcats the matrix with the specified rotation. M' = R(degrees) * M
Parameters | |
---|---|
degrees |
float
|
Returns | |
---|---|
boolean |
boolean postScale (float sx, float sy, float px, float py)
Postconcats the matrix with the specified scale. M' = S(sx, sy, px, py) * M
Parameters | |
---|---|
sx |
float
|
sy |
float
|
px |
float
|
py |
float
|
Returns | |
---|---|
boolean |
boolean postScale (float sx, float sy)
Postconcats the matrix with the specified scale. M' = S(sx, sy) * M
Parameters | |
---|---|
sx |
float
|
sy |
float
|
Returns | |
---|---|
boolean |
boolean postSkew (float kx, float ky)
Postconcats the matrix with the specified skew. M' = K(kx, ky) * M
Parameters | |
---|---|
kx |
float
|
ky |
float
|
Returns | |
---|---|
boolean |
boolean postSkew (float kx, float ky, float px, float py)
Postconcats the matrix with the specified skew. M' = K(kx, ky, px, py) * M
Parameters | |
---|---|
kx |
float
|
ky |
float
|
px |
float
|
py |
float
|
Returns | |
---|---|
boolean |
boolean postTranslate (float dx, float dy)
Postconcats the matrix with the specified translation. M' = T(dx, dy) * M
Parameters | |
---|---|
dx |
float
|
dy |
float
|
Returns | |
---|---|
boolean |
boolean preConcat (Matrix other)
Preconcats the matrix with the specified matrix. M' = M * other
Parameters | |
---|---|
other |
Matrix
|
Returns | |
---|---|
boolean |
boolean preRotate (float degrees)
Preconcats the matrix with the specified rotation. M' = M * R(degrees)
Parameters | |
---|---|
degrees |
float
|
Returns | |
---|---|
boolean |
boolean preRotate (float degrees, float px, float py)
Preconcats the matrix with the specified rotation. M' = M * R(degrees, px, py)
Parameters | |
---|---|
degrees |
float
|
px |
float
|
py |
float
|
Returns | |
---|---|
boolean |
boolean preScale (float sx, float sy)
Preconcats the matrix with the specified scale. M' = M * S(sx, sy)
Parameters | |
---|---|
sx |
float
|
sy |
float
|
Returns | |
---|---|
boolean |
boolean preScale (float sx, float sy, float px, float py)
Preconcats the matrix with the specified scale. M' = M * S(sx, sy, px, py)
Parameters | |
---|---|
sx |
float
|
sy |
float
|
px |
float
|
py |
float
|
Returns | |
---|---|
boolean |
boolean preSkew (float kx, float ky)
Preconcats the matrix with the specified skew. M' = M * K(kx, ky)
Parameters | |
---|---|
kx |
float
|
ky |
float
|
Returns | |
---|---|
boolean |
boolean preSkew (float kx, float ky, float px, float py)
Preconcats the matrix with the specified skew. M' = M * K(kx, ky, px, py)
Parameters | |
---|---|
kx |
float
|
ky |
float
|
px |
float
|
py |
float
|
Returns | |
---|---|
boolean |
boolean preTranslate (float dx, float dy)
Preconcats the matrix with the specified translation. M' = M * T(dx, dy)
Parameters | |
---|---|
dx |
float
|
dy |
float
|
Returns | |
---|---|
boolean |
boolean rectStaysRect ()
Returns true if will map a rectangle to another rectangle. This can be true if the matrix is identity, scale-only, or rotates a multiple of 90 degrees.
Returns | |
---|---|
boolean |
void set (Matrix src)
(deep) copy the src matrix into this matrix. If src is null, reset this matrix to the identity matrix.
Parameters | |
---|---|
src |
Matrix
|
boolean setConcat (Matrix a, Matrix b)
Set the matrix to the concatenation of the two specified matrices and return true.
Either of the two matrices may also be the target matrix, that is
matrixA.setConcat(matrixA, matrixB);
is valid.
In GINGERBREAD_MR1
and below, this
function returns true only if the result can be represented. In
HONEYCOMB
and above, it always returns true.
Parameters | |
---|---|
a |
Matrix
|
b |
Matrix
|
Returns | |
---|---|
boolean |
boolean setPolyToPoly (float[] src, int srcIndex, float[] dst, int dstIndex, int pointCount)
Set the matrix such that the specified src points would map to the specified dst points. The "points" are represented as an array of floats, order [x0, y0, x1, y1, ...], where each "point" is 2 float values.
Parameters | |
---|---|
src |
float :
The array of src [x,y] pairs (points) |
srcIndex |
int :
Index of the first pair of src values |
dst |
float :
The array of dst [x,y] pairs (points) |
dstIndex |
int :
Index of the first pair of dst values |
pointCount |
int :
The number of pairs/points to be used. Must be [0..4] |
Returns | |
---|---|
boolean |
true if the matrix was set to the specified transformation |
boolean setRectToRect (RectF src, RectF dst, Matrix.ScaleToFit stf)
Set the matrix to the scale and translate values that map the source rectangle to the destination rectangle, returning true if the the result can be represented.
Parameters | |
---|---|
src |
RectF :
the source rectangle to map from. |
dst |
RectF :
the destination rectangle to map to. |
stf |
Matrix.ScaleToFit :
the ScaleToFit option |
Returns | |
---|---|
boolean |
true if the matrix can be represented by the rectangle mapping. |
void setRotate (float degrees, float px, float py)
Set the matrix to rotate by the specified number of degrees, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.
Parameters | |
---|---|
degrees |
float
|
px |
float
|
py |
float
|
void setRotate (float degrees)
Set the matrix to rotate about (0,0) by the specified number of degrees.
Parameters | |
---|---|
degrees |
float
|
void setScale (float sx, float sy)
Set the matrix to scale by sx and sy.
Parameters | |
---|---|
sx |
float
|
sy |
float
|
void setScale (float sx, float sy, float px, float py)
Set the matrix to scale by sx and sy, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.
Parameters | |
---|---|
sx |
float
|
sy |
float
|
px |
float
|
py |
float
|
void setSinCos (float sinValue, float cosValue, float px, float py)
Set the matrix to rotate by the specified sine and cosine values, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.
Parameters | |
---|---|
sinValue |
float
|
cosValue |
float
|
px |
float
|
py |
float
|
void setSinCos (float sinValue, float cosValue)
Set the matrix to rotate by the specified sine and cosine values.
Parameters | |
---|---|
sinValue |
float
|
cosValue |
float
|
void setSkew (float kx, float ky)
Set the matrix to skew by sx and sy.
Parameters | |
---|---|
kx |
float
|
ky |
float
|
void setSkew (float kx, float ky, float px, float py)
Set the matrix to skew by sx and sy, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.
Parameters | |
---|---|
kx |
float
|
ky |
float
|
px |
float
|
py |
float
|
void setTranslate (float dx, float dy)
Set the matrix to translate by (dx, dy).
Parameters | |
---|---|
dx |
float
|
dy |
float
|
void setValues (float[] values)
Copy 9 values from the array into the matrix. Depending on the implementation of Matrix, these may be transformed into 16.16 integers in the Matrix, such that a subsequent call to getValues() will not yield exactly the same values.
Parameters | |
---|---|
values |
float
|
String toString ()
Returns a string representation of the object. In general, the
toString
method returns a string that
"textually represents" this object. The result should
be a concise but informative representation that is easy for a
person to read.
It is recommended that all subclasses override this method.
The toString
method for class Object
returns a string consisting of the name of the class of which the
object is an instance, the at-sign character `@
', and
the unsigned hexadecimal representation of the hash code of the
object. In other words, this method returns a string equal to the
value of:
getClass().getName() + '@' + Integer.toHexString(hashCode())
Returns | |
---|---|
String |
a string representation of the object. |
void finalize ()
Called by the garbage collector on an object when garbage collection
determines that there are no more references to the object.
A subclass overrides the finalize
method to dispose of
system resources or to perform other cleanup.
The general contract of finalize
is that it is invoked
if and when the JavaTM virtual
machine has determined that there is no longer any
means by which this object can be accessed by any thread that has
not yet died, except as a result of an action taken by the
finalization of some other object or class which is ready to be
finalized. The finalize
method may take any action, including
making this object available again to other threads; the usual purpose
of finalize
, however, is to perform cleanup actions before
the object is irrevocably discarded. For example, the finalize method
for an object that represents an input/output connection might perform
explicit I/O transactions to break the connection before the object is
permanently discarded.
The finalize
method of class Object
performs no
special action; it simply returns normally. Subclasses of
Object
may override this definition.
The Java programming language does not guarantee which thread will
invoke the finalize
method for any given object. It is
guaranteed, however, that the thread that invokes finalize will not
be holding any user-visible synchronization locks when finalize is
invoked. If an uncaught exception is thrown by the finalize method,
the exception is ignored and finalization of that object terminates.
After the finalize
method has been invoked for an object, no
further action is taken until the Java virtual machine has again
determined that there is no longer any means by which this object can
be accessed by any thread that has not yet died, including possible
actions by other objects or classes which are ready to be finalized,
at which point the object may be discarded.
The finalize
method is never invoked more than once by a Java
virtual machine for any given object.
Any exception thrown by the finalize
method causes
the finalization of this object to be halted, but is otherwise
ignored.
Throws | |
---|---|
Throwable |