2维p-波的哈密顿量 H=m,n{t(cm+1,ncm,n+ h.c. )t(cm,n+1cm,n+ h.c. )(μ4t)cm,ncm,n+(Δcm+1,ncm,n+Δcm,ncm+1,n)+(iΔcm,n+1cm,niΔcm,ncm,n+1)}. \begin{aligned} H=& \sum_{m, n}\left\{-t\left(c_{m+1, n}^{\dagger} c_{m, n}+\text { h.c. }\right)-t\left(c_{m, n+1}^{\dagger} c_{m, n}+\text { h.c. }\right)-(\mu-4 t) c_{m, n}^{\dagger} c_{m, n}\right.\\ &\left.+\left(\Delta c_{m+1, n}^{\dagger} c_{m, n}^{\dagger}+\Delta^{*} c_{m, n} c_{m+1, n}\right)+\left(i \Delta c_{m, n+1}^{\dagger} c_{m, n}^{\dagger}-i \Delta^{*} c_{m, n} c_{m, n+1}\right)\right\} . \end{aligned} 傅里叶变换到动量空间,并写成矩阵形式 HBdG=12pΨp(ϵ(p)2iΔ(sinpx+isinpy)2iΔ(sinpxisinpy)ϵ(p))Ψp H_{ BdG }=\frac{1}{2} \sum_{ p } \Psi_{ p }^{\dagger}\left(\begin{array}{cc} \epsilon( p ) & 2 i \Delta\left(\sin p_{x}+i \sin p_{y}\right) \\ -2 i \Delta^{*}\left(\sin p_{x}-i \sin p_{y}\right) & -\epsilon( p ) \end{array}\right) \Psi_{ p } 其中

  • ϵ(p)=2t(cospx+cospy)(μ4t)\epsilon( p )=-2 t\left(\cos p_{x}+\cos p_{y}\right)-(\mu-4 t)

1. 参考文献

results matching ""

    No results matching ""