1. Graphene like

  1. 先计算石墨烯的基本模型,二次量子化紧束缚模型最近邻跃迁
  2. 加入次近邻跃迁,不需要磁场也能打破时间反演对称性,得到Haldane模型(Anomalous Quantum Hall effect)
  3. Haldane模型通过打破时间反演对称性得到非平庸拓扑态,现在我们想保留时间反演对称性下找到非平庸的拓扑态。有一种方法是把两个Haldane模型叠加在一起,得到了Kane-Mele模型(Spin Quantum Hall effect)

2. Tight-Binding Approximation for graphene

图中绿色的向量 v1\vec{v}_{1}v2\vec{v}_{2}. 作为基底,其他晶格上的原子可以用 mv1+nv2m \vec{v}_{1}+n \vec{v}_{2} 表示

  • v1=(3a,0)\vec{v}_{1}=(\sqrt{3} a, 0)
  • v2=(3/2a,3/2a)\vec{v}_{2}=(-\sqrt{3} / 2 a, 3 / 2 a).

每个单位元胞有两种子晶格

  • aa 红色表示
  • bb 黑色表示

只考虑最近邻跃迁(nearest-neighbor (NN)),哈密顿量可以写成 H=ti,jaibjti,jbiaj H=-t \sum_{i, j } a_{i}^{\dagger} b_{j}-t \sum_{i, j } b_{i}^{\dagger} a_{j} 对于一个晶格,跃迁出去的有三种

  1. 沿着x轴旋转 θ=π/2,\theta=\pi / 2, e1=(0,a)\vec{e}_{1}=(0, a)
  2. 沿着x轴旋转 θ=π/2+2π/3=7π/6\theta=\pi / 2+2 \pi / 3=7 \pi / 6e2=(32a,a2)\vec{e}_{2}=\left(-\frac{\sqrt{3}}{2} a,-\frac{a}{2}\right)
  3. 沿着x轴旋转 θ=π/2+4π/3=11π/6,\theta=\pi / 2+4 \pi / 3=11 \pi / 6, e3=(32a,a2)\vec{e}_{3}=\left(\frac{\sqrt{3}}{2} a,-\frac{a}{2}\right)

哈密顿量可以具体写成 H=titbri+e1tibrie2tar++bri+e3+h.c H=-t \sum_{i}^{t} b_{r_{i}+{e}_{1}}-t \sum_{i} b_{r_{i}-e_{2}}-t \sum_{a_{r}^{+}}^{+} b_{r_{i}+ {e}_{3}}+h . c

2.1. 动量空间

傅里叶变换到动量空间 ak=1Niaieikrai=1Nkakeikrbk=1Niaieikrbi=1Nkakeikr \begin{aligned} &a_{k}=\frac{1}{\sqrt{N}} \sum_{i} a_{i} e^{i \vec{k} \cdot \vec{r}}\\ &a_{i}=\frac{1}{\sqrt{N}} \sum_{k} a_{k} e^{-i \vec{k} \cdot \vec{r}}\\ &b_{k}=\frac{1}{\sqrt{N}} \sum_{i} a_{i} e^{i \vec{k} \cdot \vec{r}}\\ &b_{i}=\frac{1}{\sqrt{N}} \sum_{k} a_{k} e^{-i \vec{k} \cdot \vec{r}} \end{aligned} 第一项变成 tiaribri+e1=tNikkakeikribkeik(ri+e1)=tkkakbkeike11Niei(kk)ri=tkkakbkeike1δk,k=tkakbkeike1 \begin{aligned} -t \sum_{i} a_{r_{i}}^{\dagger} b_{r_{i}+e_{1}}&=-\frac{t}{N} \sum_{i} \sum_{k} \sum_{k^{\prime}} a_{k}^{\dagger} e^{i \vec{k} \cdot \vec{r}_{i}} b_{k^{\prime}} e^{-i \vec{k} \cdot\left(\vec{r}_{i}+\vec{e}_{1}\right)} \\&=-t \sum_{k} \sum_{k^{\prime}} a_{k}^{\dagger} b_{k^{\prime}} e^{-i \vec{k} \cdot \overrightarrow{e_{1}}} \frac{1}{N} \sum_{i} e^{i\left(\vec{k}-\vec{k}^{\prime}\right) \vec{r}_{i}} \\&=-t \sum_{k} \sum_{k^{\prime}} a_{k}^{\dagger} b_{k^{\prime}} e^{-i \vec{k} \cdot \overrightarrow{e_{1}}} \delta_{k, k^{\prime}} \\&=-t \sum_{k} a_{k}^{\dagger} b_{k} e^{-i \vec{k} \cdot \overrightarrow{e_{1}}} \end{aligned} 类似的,计算另外两项 H=tiaribri+e1tiaribri+e2tiaribri+e3+h.c.=tkakbk(eike1+eike2+eike3)tkbkak(eike1+eike2+eike3)=k(akbk)(0H12(k)H21(k)0)(akbk) \begin{aligned} H&=-t \sum_{i} a_{r_{i}}^{\dagger} b_{r_{i}+e_{1}}-t \sum_{i} a_{r_{i}}^{\dagger} b_{r_{i}+e_{2}}-t \sum_{i} a_{r_{i}}^{\dagger} b_{r_{i}+e_{3}}+h . c . \\ &=-t \sum_{k} a_{k}^{\dagger} b_{k}\left(e^{-i \vec{k} \cdot \overrightarrow{e_{1}}}+e^{-i \vec{k} \cdot \overrightarrow{e_{2}}}+e^{-i \vec{k} \cdot \overrightarrow{e_{3}}}\right)-t \sum_{k} b_{k}^{\dagger} a_{k}\left(e^{i \vec{k} \cdot \overrightarrow{e_{1}}}+e^{i \vec{k} \cdot \overrightarrow{e_{2}}}+e^{i \vec{k} \cdot \overrightarrow{e_{3}}}\right) \\ &=\sum_{k}\left(\begin{array}{ccc} a_{k} \dagger & b_{k}^{\dagger} \end{array}\right)\left(\begin{array}{cc} 0 & \mathcal{H}_{12}(\vec{k}) \\ \mathcal{H}_{21}(\vec{k}) & 0 \end{array}\right)\left(\begin{array}{c} a_{k} \\ b_{k} \end{array}\right) \end{aligned} 其中 H12(k)=t[exp(ike1)+exp(ike2)+exp(ike3))H21(k)=H12(k)=t[exp(ike1)+exp(ike2)+exp(ike3)] \begin{aligned} &\mathcal{H}_{12}(\vec{k})=-t\left[\exp \left(-i \vec{k} \cdot \vec{e}_{1}\right)+\exp \left(-i \vec{k} \cdot \vec{e}_{2}\right)+\exp \left(-i \vec{k} \cdot \vec{e}_{3}\right)\right)\\ &\mathcal{H}_{21}(\vec{k})=\mathcal{H}_{12}(\vec{k})^{*}=-t\left[\exp \left(i \vec{k} \cdot \vec{e}_{1}\right)+\exp \left(i \vec{k} \cdot \vec{e}_{2}\right)+\exp \left(i \vec{k} \cdot \vec{e}_{3}\right)\right] \end{aligned}

矩阵 H(k)=(0H12(k)H21(k)0) \mathcal{H}(\vec{k})=\left(\begin{array}{cc} 0 & \mathcal{H}_{12}(\vec{k}) \\ \mathcal{H}_{21}(\vec{k}) & 0 \end{array}\right) 本征值 ϵ±(k)=±H12(k)=±t3+2cos(3kxa)+4cos(32kxa)cos(32kya) \begin{aligned} \epsilon_{\pm}(\vec{k})=&\pm\left|\mathcal{H}_{12}(\vec{k})\right| \\=&\pm|t| \sqrt{3+2 \cos \left(\sqrt{3} k_{x} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} k_{x} a\right) \cos \left(\frac{3}{2} k_{y} a\right)} \end{aligned}

2.2. 闭合点

色散 ϵ±\epsilon_{\pm}k\vec{k} 空间的周期性函数。

  • 低带 ϵ\epsilon_{-} 的最小值在 k=0k=0.
  • 低带 ϵ\epsilon_{-} 的最大值在布里渊区的六角晶格的角上。

六角晶格有六个角,但是

  1. θ=0\theta=0θ=2π/3 \theta=2 \pi / 3θ=4π/3\theta=4 \pi / 3 三个点是等价的点
  2. θ=π\theta=\pi θ=π+2π/3 \theta=\pi+2 \pi / 3θ=π+4π/3\theta=\pi+4 \pi / 3 三个点是等价的点

分别标记为 K=(4π33a,0)K=(4π33a,0) \begin{aligned} K&=\left(\frac{4 \pi}{3 \sqrt{3} a}, 0\right)\\ K^{\prime}&=\left(-\frac{4 \pi}{3 \sqrt{3} a}, 0\right) \end{aligned} 在这些点上, ϵ+=ϵ=0\epsilon_{+}=\epsilon_{-}=0 ϵ±(K)=±H12(K)=±t3+2cos(3kxa)+4cos(32kxa)cos(32kya)=±t(3+2cos(34π33aa)+4cos(324π33a)cos(32×0))=±t3+2cos(4π3)+4cos(2π3)=±t3+2×(12)+4×(12)=33=0 \begin{aligned} \epsilon_{\pm}(\vec{K}) &=\pm\left|\mathcal{H}_{12}(\vec{K})\right|=\pm|t| \sqrt{3+2 \cos \left(\sqrt{3} k_{x} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} k_{x} a\right) \cos \left(\frac{3}{2} k_{y} a\right)} \\&= \pm |t| \sqrt{\left(3+2 \cos \left(\sqrt{3} \frac{4 \pi}{3 \sqrt{3} a} a\right)+4 \cos \left(\frac{\sqrt{3}}{2} \frac{4 \pi}{3 \sqrt{3} a}\right) \cos \left(\frac{3}{2} \times 0\right)\right)} \\&= \pm|t| \sqrt{3+2 \cos \left(\frac{4 \pi}{3}\right)+4 \cos \left(\frac{2 \pi}{3}\right)} \\&=\pm|t| \sqrt{3+2 \times\left(-\frac{1}{2}\right)+4 \times\left(-\frac{1}{2}\right)} \\&=\sqrt{3-3}=0 \end{aligned} 所以两个能带在这六个点上相交

2.3. Dirac 点

K\mathrm{K}K\mathrm{K}^{\prime} 点上,对色散线性化 ϵ±±(kK).\epsilon_{\pm} \propto \pm(k-K) . ϵ±(k)=ϵ±(K+q)=±t(3+2cos[3(4π33a+qx)a]+4cos[32(4π33a+qx)a]cos(32qya))=±32taqx2+qy2+O(q2)=±32taq+O(q2) \begin{aligned} \epsilon_{\pm}(\vec{k}) &=\epsilon_{\pm}(\vec{K}+\vec{q}) \\ &=\pm|t| \sqrt{\left(3+2 \cos \left[\sqrt{3}\left(\frac{4 \pi}{3 \sqrt{3} a}+q_{x}\right) a\right]+4 \cos \left[\frac{\sqrt{3}}{2}\left(\frac{4 \pi}{3 \sqrt{3} a}+q_{x}\right) a\right] \cos \left(\frac{3}{2} q_{y} a\right)\right)} \\ & =\pm \frac{3}{2}|t| a \sqrt{q_{x}^{2}+q_{y}^{2}}+O\left(q^{2}\right)\\ &=\pm \frac{3}{2}|t| a q+O\left(q^{2}\right) \end{aligned}

画出图像

K\mathrm{K} 点附近 H(k)=H(K+q)=32ta(0qxiqyqx+iqy0)+O(q2)32ta(qxσx+qyσy)=cqσ \begin{aligned} \mathcal{H}(k)&=\mathcal{H}(K+q)\\ &=\frac{3}{2} t a\left(\begin{array}{cc} 0 & q_{x}-i q_{y} \\ q_{x}+i q_{y} & 0 \end{array}\right)+O\left(q^{2}\right) \approx \frac{3}{2} t a\left(q_{x} \sigma_{x}+q_{y} \sigma_{y}\right)\\ &=c \vec{q} \cdot \vec{\sigma} \end{aligned} K\mathrm{K}^{\prime} 点附近 H(k)=H(K+q)=32ta(0qx+iqyqxiqy0)+O(q2)32ta(qxσxqyσy)=cq(σxσσx) \begin{aligned} \mathcal{H}(k)&=\mathcal{H}\left(K^{\prime}+q\right)\\ &=-\frac{3}{2} \operatorname{ta}\left(\begin{array}{cc} 0 & q_{x}+i q_{y} \\ q_{x}-i q_{y} & 0 \end{array}\right)+O\left(q^{2}\right) \\ &\approx-\frac{3}{2} \operatorname{ta}\left(q_{x} \sigma_{x}-q_{y} \sigma_{y}\right)\\ &=-c \vec{q} \cdot\left(\sigma_{x} \vec{\sigma} \sigma_{x}\right) \end{aligned} 其中 c 是光速

  1. 每个 K\mathrm{K}K\mathrm{K}^{\prime} 点是一个外尔费米子
  2. K\mathrm{K}K\mathrm{K}^{\prime} 两个外尔费米子,有不同的手征,合成一个狄拉克费米子

符合狄拉克方程 itψ=(0cqσcqσ0)ψ i \partial_{t} \psi=\left(\begin{array}{cc} 0 & c \vec{q} \cdot \vec{\sigma} \\ c \vec{q} \cdot \vec{\sigma} & 0 \end{array}\right) \psi

results matching ""

    No results matching ""