1. Haldane Mode

参考文献

  1. F. D. M. Haldane, Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly" Phys. Rev. Lett. 61, 2015-2018 (1988).

加入第二邻近跃迁

这个第二邻近跃迁又称为Haldane项,用mm表示,因为会打开一个能隙,形成等效质量 Hm=miCRi,1CRi,1CRi,2CRi,2=mi,σ(1)σCRi,σCRi,σ=mk,σ(1)σCk,σCk,σ=k(Ck,1Ck,2)mσz(Ck,1Ck,2) \begin{aligned} H_{m} &=m \sum_{i} C_{ R _{i}, 1}^{\dagger} C_{ R _{i}, 1}-C_{ R _{i}, 2}^{\dagger} C_{ R _{i}, 2} \\ &=-m \sum_{i, \sigma}(-1)^{\sigma} C_{ R _{i}, \sigma}^{\dagger} C_{ R _{i}, \sigma} \\ &=-m \sum_{ k , \sigma}(-1)^{\sigma} C_{ k , \sigma}^{\dagger} C_{ k , \sigma} \\ &=\sum_{ k }\left(\begin{array}{ll} C_{ k , 1}^{\dagger} & C_{ k , 2}^{\dagger} \end{array}\right) m \sigma_{z}\left(\begin{array}{l} C_{ k , 1} \\ C_{ k , 2} \end{array}\right) \end{aligned} 总哈密顿量 H(k)=HTB(k)+Hm(k) H( k )=H_{T B}( k )+H_{m}( k )

2. Haldane模型的陈数

在泡利矩阵表示下的Haldane模型 H(k,ϕ)=h(k,ϕ)σ H( k , \phi)= h ( k , \phi) \cdot \sigma 其中 hx=t1[cos(33ky)+2cos(kx2)cos(36ky)]hy=t1[sin(33ky)2cos(kx2)sin(36ky)]hz=m+2t2sinϕ[sin(kx)2sin(kx2)cos(32ky)] \begin{array}{l} h_{x}=t_{1}\left[\cos \left(\frac{\sqrt{3}}{3} k_{y}\right)+2 \cos \left(\frac{k_{x}}{2}\right) \cos \left(\frac{\sqrt{3}}{6} k_{y}\right)\right] \\ h_{y}=t_{1}\left[\sin \left(\frac{\sqrt{3}}{3} k_{y}\right)-2 \cos \left(\frac{k_{x}}{2}\right) \sin \left(\frac{\sqrt{3}}{6} k_{y}\right)\right] \\ h_{z}=m+2 t_{2} \sin \phi\left[\sin \left(k_{x}\right)-2 \sin \left(\frac{k_{x}}{2}\right) \cos \left(\frac{\sqrt{3}}{2} k_{y}\right)\right] \end{array}

对于 KK(kx,ky)=(4π3,0)\left(k_{x}, k_{y}\right)=\left(\frac{4 \pi}{3}, 0\right)

  • 展开 sin(kx2)3214qx\sin \left(\frac{k_{x}}{2}\right) \approx \frac{\sqrt{3}}{2}-\frac{1}{4} q_{x}
  • 展开 cos(32ky)1\cos \left(\frac{\sqrt{3}}{2} k_{y}\right) \approx 1
  • 展开 sinkx3212qx\sin k_{x} \approx-\frac{\sqrt{3}}{2}-\frac{1}{2} q_{x}
  • 其中 qx=kx4π3q_{x}=k_{x}-\frac{4 \pi}{3}

所以哈密顿量在 KK 点展开成 HKt132(qxσxqyσy)+(m33t2sinϕ)σz H_{K} \approx-\frac{t_{1} \sqrt{3}}{2}\left(q_{x} \sigma_{x}-q_{y} \sigma_{y}\right)+\left(m-3 \sqrt{3} t_{2} \sin \phi\right) \sigma_{z} 哈密顿量对于 KK^{\prime}(kx,ky)=(4π3,0)\left(k_{x}, k_{y}\right)=\left(-\frac{4 \pi}{3}, 0\right) 展开成 HKt132(qxσx+qyσy)+(m+33t2sinϕ)σz H_{K^{\prime}} \approx-\frac{t_{1} \sqrt{3}}{2}\left(q_{x} \sigma_{x}+q_{y} \sigma_{y}\right)+\left(m+3 \sqrt{3} t_{2} \sin \phi\right) \sigma_{z}

m33t2sinϕm \approx-3 \sqrt{3} t_{2} \sin \phi,其中 ϕ>0\phi>0

本征方程 (ureiθreiθu),k=E,k \left(\begin{array}{cc} u & -r e^{i \theta} \\ -r e^{-i \theta} & u \end{array}\right)|-, k\rangle=-E|-, k\rangle

因为有非平庸拓扑数,我们可以预期存在边界态

results matching ""

    No results matching ""