参考

  1. Defective Majorana zero modes in non-Hermitian Kitaev chain(2021)arxiv.2010.11451

在普通的Kitaev基础上,引入

  1. 非对称的跃迁幅度,向左向右分别是 tL/R=te±ϵβ1t_{L / R}=t e^{\pm \epsilon {\beta}_{1}}
  2. 非对称的超导配对,Δ±=Δ0e±β2\Delta^{\pm}=\Delta_{0} e^{\pm \beta_{2}}

所以系统的哈密顿量变成 HNH=j[tLcjcj+1+tRcj+1cj+Δ+cjcj+1+Δcj+1cj+μ(12nj)] \begin{aligned} H_{ NH }=&-\sum_{j}\left[t_{L} c_{j}^{\dagger} c_{j+1}+t_{R} c_{j+1}^{\dagger} c_{j}\right.\\ &\left.+\Delta^{+} c_{j}^{\dagger} c_{j+1}^{\dagger}+\Delta^{-} c_{j+1} c_{j}+\mu\left(1-2 n_{j}\right)\right] \end{aligned} 把哈密顿量写成BdG形式 HNH=ChBdGC H_{ NH }=C^{\dagger} h_{ BdG } C 其中基底是 C=(c1,A,,cN,B,c1,A,,cN,B)TC=(c1,A,,cN,B,c1,A,,cN,B) \begin{aligned} C &=\left(c_{1, A}, \cdots, c_{N, B}, c_{1, A}^{\dagger}, \cdots, c_{N, B}^{\dagger}\right)^{T} \\ C^{\dagger} &=\left(c_{1, A}^{\dagger}, \cdots, c_{N, B}^{\dagger}, c_{1, A}, \cdots, c_{N, B}\right) \end{aligned}

results matching ""

    No results matching ""