KIT phantom dataset tutorial#

Here we read KIT data obtained from a phantom with 49 dipoles sequentially activated with 2-cycle 11 Hz sinusoidal bursts to verify source localization accuracy.

# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import mne_bids
import numpy as np

import mne

data_path = mne.datasets.phantom_kit.data_path()
actual_pos, actual_ori = mne.dipole.get_phantom_dipoles("oyama")
actual_pos, actual_ori = actual_pos[:49], actual_ori[:49]  # only 49 of 50 dipoles

bids_path = mne_bids.BIDSPath(
    root=data_path,
    subject="01",
    task="phantom",
    run="01",
    datatype="meg",
)
# ignore warning about misc units
raw = mne_bids.read_raw_bids(bids_path).load_data()

# Let's apply a little bit of preprocessing (temporal filtering and reference
# regression)
picks_artifact = ["MISC 001", "MISC 002", "MISC 003"]
picks = np.r_[
    mne.pick_types(raw.info, meg=True),
    mne.pick_channels(raw.info["ch_names"], picks_artifact),
]
raw.filter(None, 40, picks=picks)
mne.preprocessing.regress_artifact(
    raw, picks="meg", picks_artifact=picks_artifact, copy=False, proj=False
)
plot_scalings = dict(mag=5e-12)  # large-amplitude sinusoids
raw_plot_kwargs = dict(duration=15, n_channels=50, scalings=plot_scalings)
events, event_id = mne.events_from_annotations(raw)
raw.plot(events=events, **raw_plot_kwargs)
n_dip = len(event_id)
assert n_dip == 49  # sanity check
Raw plot
Opening raw data file /home/circleci/mne_data/MNE-phantom-KIT-data/sub-01/meg/sub-01_task-phantom_run-01_meg.fif...
Isotrak not found
    Range : 0 ... 605800 =      0.000 ...   302.900 secs
Ready.
Reading events from /home/circleci/mne_data/MNE-phantom-KIT-data/sub-01/meg/sub-01_task-phantom_run-01_events.tsv.
Reading channel info from /home/circleci/mne_data/MNE-phantom-KIT-data/sub-01/meg/sub-01_task-phantom_run-01_channels.tsv.
Reading 0 ... 605800  =      0.000 ...   302.900 secs...
Filtering raw data in 1 contiguous segment
Setting up low-pass filter at 40 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal lowpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Upper passband edge: 40.00 Hz
- Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz)
- Filter length: 661 samples (0.331 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.9s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    2.2s
Used Annotations descriptions: [np.str_('dip01'), np.str_('dip02'), np.str_('dip03'), np.str_('dip04'), np.str_('dip05'), np.str_('dip06'), np.str_('dip07'), np.str_('dip08'), np.str_('dip09'), np.str_('dip10'), np.str_('dip11'), np.str_('dip12'), np.str_('dip13'), np.str_('dip14'), np.str_('dip15'), np.str_('dip16'), np.str_('dip17'), np.str_('dip18'), np.str_('dip19'), np.str_('dip20'), np.str_('dip21'), np.str_('dip22'), np.str_('dip23'), np.str_('dip24'), np.str_('dip25'), np.str_('dip26'), np.str_('dip27'), np.str_('dip28'), np.str_('dip29'), np.str_('dip30'), np.str_('dip31'), np.str_('dip32'), np.str_('dip33'), np.str_('dip34'), np.str_('dip35'), np.str_('dip36'), np.str_('dip37'), np.str_('dip38'), np.str_('dip39'), np.str_('dip40'), np.str_('dip41'), np.str_('dip42'), np.str_('dip43'), np.str_('dip44'), np.str_('dip45'), np.str_('dip46'), np.str_('dip47'), np.str_('dip48'), np.str_('dip49')]

We can also look at the power spectral density to see the phantom oscillations at 11 Hz plus the expected frequency-domain sinc-like oscillations due to the time-domain boxcar windowing of the 11 Hz sinusoid.

spectrum = raw.copy().crop(0, 60).compute_psd(n_fft=10000)
fig = spectrum.plot(amplitude=False)
fig.axes[0].set_xlim(0, 50)
dip_freq = 11.0
fig.axes[0].axvline(dip_freq, color="r", ls="--", lw=2, zorder=4)
Magnetometers
Effective window size : 5.000 (s)
Plotting power spectral density (dB=True).

Now we can figure out our epoching parameters and epoch the data and plot it.

tmin, tmax = -0.08, 0.18
epochs = mne.Epochs(raw, tmin=tmin, tmax=tmax, decim=10, picks="data", preload=True)
del raw
epochs.plot(scalings=plot_scalings)
Raw plot
Used Annotations descriptions: [np.str_('dip01'), np.str_('dip02'), np.str_('dip03'), np.str_('dip04'), np.str_('dip05'), np.str_('dip06'), np.str_('dip07'), np.str_('dip08'), np.str_('dip09'), np.str_('dip10'), np.str_('dip11'), np.str_('dip12'), np.str_('dip13'), np.str_('dip14'), np.str_('dip15'), np.str_('dip16'), np.str_('dip17'), np.str_('dip18'), np.str_('dip19'), np.str_('dip20'), np.str_('dip21'), np.str_('dip22'), np.str_('dip23'), np.str_('dip24'), np.str_('dip25'), np.str_('dip26'), np.str_('dip27'), np.str_('dip28'), np.str_('dip29'), np.str_('dip30'), np.str_('dip31'), np.str_('dip32'), np.str_('dip33'), np.str_('dip34'), np.str_('dip35'), np.str_('dip36'), np.str_('dip37'), np.str_('dip38'), np.str_('dip39'), np.str_('dip40'), np.str_('dip41'), np.str_('dip42'), np.str_('dip43'), np.str_('dip44'), np.str_('dip45'), np.str_('dip46'), np.str_('dip47'), np.str_('dip48'), np.str_('dip49')]
Not setting metadata
1029 matching events found
Setting baseline interval to [-0.08, 0.0] s
Applying baseline correction (mode: mean)
0 projection items activated
Using data from preloaded Raw for 1029 events and 521 original time points (prior to decimation) ...
0 bad epochs dropped

Now we can average the epochs for each dipole, get the activation at the peak time, and create an mne.EvokedArray from the result.

t_peak = 1.0 / dip_freq / 4.0
data = np.zeros((len(epochs.ch_names), n_dip))
for di in range(n_dip):
    data[:, [di]] = epochs[f"dip{di + 1:02d}"].average().crop(t_peak, t_peak).data
evoked = mne.EvokedArray(data, epochs.info, tmin=0, comment="KIT phantom activations")
evoked.plot_joint()
Magnetometers (160 channels), 0.040 s, 0.050 s, 0.100 s
No projector specified for this dataset. Please consider the method self.add_proj.

Let’s fit dipoles at each dipole’s peak activation time.

trans = mne.transforms.Transform("head", "mri", np.eye(4))
sphere = mne.make_sphere_model(r0=(0.0, 0.0, 0.0), head_radius=0.08)
cov = mne.compute_covariance(epochs, tmax=0, method="empirical")
dip, residual = mne.fit_dipole(evoked, cov, sphere, n_jobs=None)
Equiv. model fitting -> RV = 0.00372574 %%
mu1 = 0.943949    lambda1 = 0.13907
mu2 = 0.665532    lambda2 = 0.684825
mu3 = -0.0985303    lambda3 = -0.0135253
Set up EEG sphere model with scalp radius    80.0 mm

Reducing data rank from 160 -> 160
Estimating covariance using EMPIRICAL
Done.
Number of samples used : 17493
[done]
BEM               : <ConductorModel | Sphere (3 layers): r0=[0.0, 0.0, 0.0] R=80 mm>
MRI transform     : identity
Sphere model      : origin at (   0.00    0.00    0.00) mm, rad =    0.1 mm
Guess grid        :   20.0 mm
Guess mindist     :    5.0 mm
Guess exclude     :   20.0 mm
Using normal MEG coil definitions.
Noise covariance  : <Covariance | kind : full, shape : (160, 160), range : [-8e-28, +2.4e-26], n_samples : 17492>

Coordinate transformation: MRI (surface RAS) -> head
    1.000000 0.000000 0.000000       0.00 mm
    0.000000 1.000000 0.000000       0.00 mm
    0.000000 0.000000 1.000000       0.00 mm
    0.000000 0.000000 0.000000       1.00
Coordinate transformation: MEG device -> head
    0.998477 0.050618 -0.021924      10.00 mm
    -0.052328 0.994909 -0.086126     -15.00 mm
    0.017452 0.087142 0.996043     -88.00 mm
    0.000000 0.000000 0.000000       1.00
0 bad channels total
Read 160 MEG channels from info
105 coil definitions read
Coordinate transformation: MEG device -> head
    0.998477 0.050618 -0.021924      10.00 mm
    -0.052328 0.994909 -0.086126     -15.00 mm
    0.017452 0.087142 0.996043     -88.00 mm
    0.000000 0.000000 0.000000       1.00
MEG coil definitions created in head coordinates.
Decomposing the sensor noise covariance matrix...
Computing rank from covariance with rank=None
    Using tolerance 9.2e-16 (2.2e-16 eps * 160 dim * 0.026  max singular value)
    Estimated rank (mag): 160
    MAG: rank 160 computed from 160 data channels with 0 projectors
    Setting small MAG eigenvalues to zero (without PCA)
    Created the whitener using a noise covariance matrix with rank 160 (0 small eigenvalues omitted)

---- Computing the forward solution for the guesses...
Making a spherical guess space with radius    72.0 mm...
Filtering (grid =     20 mm)...
Surface CM = (   0.0    0.0    0.0) mm
Surface fits inside a sphere with radius   72.0 mm
Surface extent:
    x =  -72.0 ...   72.0 mm
    y =  -72.0 ...   72.0 mm
    z =  -72.0 ...   72.0 mm
Grid extent:
    x =  -80.0 ...   80.0 mm
    y =  -80.0 ...   80.0 mm
    z =  -80.0 ...   80.0 mm
729 sources before omitting any.
178 sources after omitting infeasible sources not within 20.0 - 72.0 mm.
170 sources remaining after excluding the sources outside the surface and less than    5.0 mm inside.
Go through all guess source locations...
[done 170 sources]
---- Fitted :     0.0 ms
---- Fitted :     5.0 ms
---- Fitted :    10.0 ms
---- Fitted :    15.0 ms
---- Fitted :    20.0 ms
---- Fitted :    25.0 ms
---- Fitted :    30.0 ms
---- Fitted :    35.0 ms
---- Fitted :    40.0 ms
---- Fitted :    45.0 ms
---- Fitted :    50.0 ms
---- Fitted :    55.0 ms
---- Fitted :    60.0 ms
---- Fitted :    65.0 ms
---- Fitted :    70.0 ms
---- Fitted :    75.0 ms
---- Fitted :    80.0 ms
[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.4s
---- Fitted :    85.0 ms
---- Fitted :    90.0 ms
---- Fitted :    95.0 ms
---- Fitted :   100.0 ms
---- Fitted :   105.0 ms
---- Fitted :   110.0 ms
---- Fitted :   115.0 ms
---- Fitted :   120.0 ms
---- Fitted :   125.0 ms
---- Fitted :   130.0 ms
---- Fitted :   135.0 ms
---- Fitted :   140.0 ms
---- Fitted :   145.0 ms
---- Fitted :   150.0 ms
---- Fitted :   155.0 ms
---- Fitted :   160.0 ms
---- Fitted :   165.0 ms
---- Fitted :   170.0 ms
---- Fitted :   175.0 ms
---- Fitted :   180.0 ms
---- Fitted :   185.0 ms
---- Fitted :   190.0 ms
---- Fitted :   195.0 ms
---- Fitted :   200.0 ms
---- Fitted :   205.0 ms
---- Fitted :   210.0 ms
---- Fitted :   215.0 ms
---- Fitted :   220.0 ms
---- Fitted :   225.0 ms
---- Fitted :   230.0 ms
---- Fitted :   235.0 ms
---- Fitted :   240.0 ms
No projector specified for this dataset. Please consider the method self.add_proj.
49 time points fitted

Finally let’s look at the results.

print(f"Average amplitude: {np.mean(dip.amplitude) * 1e9:0.1f} nAm")
print(f"Average GOF:       {np.mean(dip.gof):0.1f}%")
diffs = 1000 * np.sqrt(np.sum((dip.pos - actual_pos) ** 2, axis=-1))
print(f"Average loc error: {np.mean(diffs):0.1f} mm")
angles = np.rad2deg(np.arccos(np.abs(np.sum(dip.ori * actual_ori, axis=1))))
print(f"Average ori error: {np.mean(angles):0.1f}°")

fig = mne.viz.plot_alignment(
    evoked.info,
    trans,
    bem=sphere,
    coord_frame="head",
    meg="helmet",
    show_axes=True,
)
fig = mne.viz.plot_dipole_locations(
    dipoles=dip, mode="arrow", color=(0.2, 1.0, 0.5), fig=fig
)

actual_amp = np.ones(len(dip))  # misc amp to create Dipole instance
actual_gof = np.ones(len(dip))  # misc GOF to create Dipole instance
dip_true = mne.Dipole(dip.times, actual_pos, actual_amp, actual_ori, actual_gof)
fig = mne.viz.plot_dipole_locations(
    dipoles=dip_true, mode="arrow", color=(0.0, 0.0, 0.0), fig=fig
)

mne.viz.set_3d_view(figure=fig, azimuth=90, elevation=90, distance=0.5)
95 phantom KIT
Average amplitude: 579.0 nAm
Average GOF:       99.6%
Average loc error: 1.6 mm
Average ori error: 9.6°
Getting helmet for system KIT (derived from 160 MEG channel locations)

Total running time of the script: (0 minutes 22.404 seconds)

Gallery generated by Sphinx-Gallery