mne.decoding.ReceptiveField#

class mne.decoding.ReceptiveField(tmin, tmax, sfreq, feature_names=None, estimator=None, fit_intercept=None, scoring='r2', patterns=False, n_jobs=None, edge_correction=True)[source]#

Fit a receptive field model.

This allows you to fit an encoding model (stimulus to brain) or a decoding model (brain to stimulus) using time-lagged input features (for example, a spectro- or spatio-temporal receptive field, or STRF) [1][2][3][4].

Parameters:
tminfloat

The starting lag, in seconds (or samples if sfreq == 1).

tmaxfloat

The ending lag, in seconds (or samples if sfreq == 1). Must be >= tmin.

sfreqfloat

The sampling frequency used to convert times into samples.

feature_namesarray, shape (n_features,) | None

Names for input features to the model. If None, feature names will be auto-generated from the shape of input data after running fit.

estimatorinstance of sklearn.base.BaseEstimator | float | None

The model used in fitting inputs and outputs. This can be any scikit-learn-style model that contains a fit and predict method. If a float is passed, it will be interpreted as the alpha parameter to be passed to a Ridge regression model. If None, then a Ridge regression model with an alpha of 0 will be used.

fit_interceptbool | None

If True (default), the sample mean is removed before fitting. If estimator is a sklearn.base.BaseEstimator, this must be None or match estimator.fit_intercept.

scoring[‘r2’, ‘corrcoef’]

Defines how predictions will be scored. Currently must be one of ‘r2’ (coefficient of determination) or ‘corrcoef’ (the correlation coefficient).

patternsbool

If True, inverse coefficients will be computed upon fitting using the covariance matrix of the inputs, and the cross-covariance of the inputs/outputs, according to [5]. Defaults to False.

n_jobsint | str

Number of jobs to run in parallel. Can be ‘cuda’ if CuPy is installed properly and estimator is None.

New in v0.18.

edge_correctionbool

If True (default), correct the autocorrelation coefficients for non-zero delays for the fact that fewer samples are available. Disabling this speeds up performance at the cost of accuracy depending on the relationship between epoch length and model duration. Only used if estimator is float or None.

New in v0.18.

Attributes:
coef_array, shape ([n_outputs, ]n_features, n_delays)

The coefficients from the model fit, reshaped for easy visualization. During mne.decoding.ReceptiveField.fit(), if y has one dimension (time), the n_outputs dimension here is omitted.

patterns_array, shape ([n_outputs, ]n_features, n_delays)

If fit, the inverted coefficients from the model.

delays_array, shape (n_delays,), dtype int

The delays used to fit the model, in indices. To return the delays in seconds, use self.delays_ / self.sfreq

valid_samples_slice

The rows to keep during model fitting after removing rows with missing values due to time delaying. This can be used to get an output equivalent to using numpy.convolve() or numpy.correlate() with mode='valid'.

Methods

fit(X, y)

Fit a receptive field model.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(X)

Generate predictions with a receptive field.

score(X, y)

Score predictions generated with a receptive field.

set_params(**params)

Set the parameters of this estimator.

Notes

For a causal system, the encoding model will have significant non-zero values only at positive lags. In other words, lags point backward in time relative to the input, so positive lags correspond to previous input time samples, while negative lags correspond to future input time samples.

References

fit(X, y)[source]#

Fit a receptive field model.

Parameters:
Xarray, shape (n_times[, n_epochs], n_features)

The input features for the model.

yarray, shape (n_times[, n_epochs][, n_outputs])

The output features for the model.

Returns:
selfinstance

The instance so you can chain operations.

Examples using fit:

Spectro-temporal receptive field (STRF) estimation on continuous data

Spectro-temporal receptive field (STRF) estimation on continuous data

Receptive Field Estimation and Prediction

Receptive Field Estimation and Prediction
get_metadata_routing()[source]#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

predict(X)[source]#

Generate predictions with a receptive field.

Parameters:
Xarray, shape (n_times[, n_epochs], n_channels)

The input features for the model.

Returns:
y_predarray, shape (n_times[, n_epochs][, n_outputs])

The output predictions. “Note that valid samples (those unaffected by edge artifacts during the time delaying step) can be obtained using y_pred[rf.valid_samples_].

Examples using predict:

Spectro-temporal receptive field (STRF) estimation on continuous data

Spectro-temporal receptive field (STRF) estimation on continuous data

Receptive Field Estimation and Prediction

Receptive Field Estimation and Prediction
score(X, y)[source]#

Score predictions generated with a receptive field.

This calls self.predict, then masks the output of this and y` with ``self.valid_samples_. Finally, it passes this to a sklearn.metrics scorer.

Parameters:
Xarray, shape (n_times[, n_epochs], n_channels)

The input features for the model.

yarray, shape (n_times[, n_epochs][, n_outputs])

Used for scikit-learn compatibility.

Returns:
scoreslist of float, shape (n_outputs,)

The scores estimated by the model for each output (e.g. mean R2 of predict(X)).

Examples using score:

Spectro-temporal receptive field (STRF) estimation on continuous data

Spectro-temporal receptive field (STRF) estimation on continuous data

Receptive Field Estimation and Prediction

Receptive Field Estimation and Prediction
set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

Examples using mne.decoding.ReceptiveField#

Spectro-temporal receptive field (STRF) estimation on continuous data

Spectro-temporal receptive field (STRF) estimation on continuous data

Receptive Field Estimation and Prediction

Receptive Field Estimation and Prediction