mne.make_ad_hoc_cov#
- mne.make_ad_hoc_cov(info, std=None, *, verbose=None)[source]#
Create an ad hoc noise covariance.
- Parameters:
- info
mne.Info
The
mne.Info
object with information about the sensors and methods of measurement.- std
dict
offloat
|None
Standard_deviation of the diagonal elements. If dict, keys should be
'grad'
for gradiometers,'mag'
for magnetometers and'eeg'
for EEG channels. If None, default values will be used (see Notes).- verbosebool |
str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- info
- Returns:
- covinstance of
Covariance
The ad hoc diagonal noise covariance for the M/EEG data channels.
- covinstance of
Notes
The default noise values are 5 fT/cm, 20 fT, and 0.2 µV for gradiometers, magnetometers, and EEG channels respectively.
New in v0.9.0.
Examples using mne.make_ad_hoc_cov
#
Compare simulated and estimated source activity
Generate simulated source data