mne.viz.plot_cov#
- mne.viz.plot_cov(cov, info, exclude=(), colorbar=True, proj=False, show_svd=True, show=True, verbose=None)[source]#
Plot Covariance data.
- Parameters:
- covinstance of
Covariance
The covariance matrix.
- info
mne.Info
The
mne.Info
object with information about the sensors and methods of measurement.- exclude
list
ofstr
|str
List of channels to exclude. If empty do not exclude any channel. If ‘bads’, exclude info[‘bads’].
- colorbarbool
Show colorbar or not.
- projbool
Apply projections or not.
- show_svdbool
Plot also singular values of the noise covariance for each sensor type. We show square roots ie. standard deviations.
- showbool
Show figure if True.
- verbosebool |
str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- covinstance of
- Returns:
- fig_covinstance of
matplotlib.figure.Figure
The covariance plot.
- fig_svdinstance of
matplotlib.figure.Figure
|None
The SVD plot of the covariance (i.e., the eigenvalues or “matrix spectrum”).
- fig_covinstance of
See also
Notes
For each channel type, the rank is estimated using
mne.compute_rank()
.Changed in version 0.19: Approximate ranks for each channel type are shown with red dashed lines.
Examples using mne.viz.plot_cov
#
Source localization with MNE, dSPM, sLORETA, and eLORETA
Compute source power estimate by projecting the covariance with MNE