GPfates
Input saved to /scratch/irc/personal/robrechtc/tmp//RtmpJCmWad/input:
end_n.json
expression.csv
params.json
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s03 0000 3.771325e+04 nan
00s11 0001 3.771325e+04 1.442536e+08
00s12 0002 2.962905e+04 2.802757e+07
00s16 0003 2.632110e+04 8.509936e+06
00s19 0004 2.411280e+04 2.048242e+06
01s24 0024 2.108764e+04 6.019888e+02
02s25 0045 2.101695e+04 9.863411e+01
03s29 0076 2.100379e+04 5.924529e+00
04s40 0101 2.100219e+04 2.972539e+00
05s42 0120 2.100154e+04 2.474052e+00
06s43 0132 2.100086e+04 8.693208e+01
07s47 0149 2.099551e+04 4.434017e+01
08s51 0164 2.098381e+04 1.822550e+01
09s54 0185 2.097560e+04 2.687933e+02
10s55 0203 2.096541e+04 2.308901e+02
11s58 0224 2.095720e+04 1.520085e+01
12s60 0242 2.095205e+04 2.252873e+01
13s62 0268 2.094908e+04 3.888418e+00
14s64 0292 2.094416e+04 2.952850e+00
15s68 0312 2.094221e+04 8.173468e+00
16s70 0333 2.094140e+04 4.249256e+00
17s71 0366 2.094076e+04 6.874970e+00
18s72 0399 2.094004e+04 1.030774e+00
19s78 0419 2.093975e+04 1.595974e+00
20s81 0436 2.093962e+04 6.551021e+00
21s85 0451 2.093954e+04 1.405546e+01
22s88 0469 2.093935e+04 3.641939e-01
23s93 0487 2.093931e+04 3.793906e+01
24s93 0510 2.093909e+04 1.421517e-01
25s94 0544 2.093895e+04 2.446794e-01
26s94 0565 2.093872e+04 3.285552e-01
27s99 0583 2.093867e+04 1.048818e-01
29s03 0606 2.093862e+04 1.080889e-01
30s04 0621 2.093860e+04 1.018476e-01
31s05 0638 2.093856e+04 6.045770e-02
32s10 0659 2.093853e+04 1.325172e-02
33s12 0681 2.093851e+04 5.369829e-02
34s12 0699 2.093850e+04 6.542815e-03
35s18 0715 2.093849e+04 2.000816e-02
36s18 0743 2.093848e+04 1.638201e-02
37s19 0796 2.093847e+04 5.134707e-03
38s23 0826 2.093846e+04 6.078949e-03
39s29 0848 2.093846e+04 1.016655e-02
40s32 0867 2.093845e+04 1.356512e-02
41s34 0885 2.093845e+04 2.176663e-03
42s05 0898 2.093845e+04 2.441338e-02
Runtime: 42s05
Optimization status: Converged
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 0000 4.059820e+02 nan
00s01 0001 4.059820e+02 8.681937e+02
00s05 0002 3.848856e+02 1.640404e+02
00s08 0003 3.780649e+02 4.044536e+02
00s10 0004 3.590393e+02 6.935865e+02
00s14 0005 3.136494e+02 2.081917e+02
00s16 0006 2.847392e+02 8.111059e+02
00s18 0007 3.145944e+02 2.264301e+03
00s75 0022 1.524707e+02 7.251108e+03
Runtime: 00s75
Optimization status: Converged
iteration 1 bound=247.14370251680458 grad=150.69598734891795, beta=0
iteration 2 bound=250.03914130712178 grad=142.03286726816717, beta=0.9972054398561179
iteration 3 bound=254.09755194885315 grad=126.33194705131008, beta=0.9909729012588182
iteration 4 bound=258.9499935104974 grad=106.06640067430017, beta=0.977553533722718
iteration 5 bound=264.07295779939 grad=83.76724196361079, beta=0.953196841606301
iteration 6 bound=268.84187154716307 grad=61.75057624076406, beta=0.9156795128550749
iteration 7 bound=272.7121430701328 grad=42.13361571959389, beta=0.8668084707228034
iteration 8 bound=275.4413008892445 grad=26.582556772919812, beta=0.813507360455819
iteration 9 bound=277.1371391454466 grad=15.737256584941406, beta=0.7646635401797486
iteration 10 bound=278.0924904658598 grad=9.035913810717737, beta=0.7259115222586568
iteration 11 bound=278.59780597944695 grad=5.275868287870416, beta=0.6981198407090627
iteration 12 bound=278.8590025366791 grad=3.2954908692548, beta=0.6803272066971161
iteration 13 bound=278.9977580954508 grad=2.2773278399523953, beta=0.6731407675022053
iteration 14 bound=279.0782275059832 grad=1.7400614071204286, beta=0.6797471900306872
iteration 15 bound=279.131717114686 grad=1.4306790536759395, beta=0.7028961805023743
iteration 16 bound=279.1727214279679 grad=1.2261708091349406, beta=0.7386996607573381
iteration 17 bound=279.2076996733083 grad=1.0698509019287585, beta=0.7762734182919621
iteration 18 bound=279.2393792107057 grad=0.9365877397137659, beta=0.8064842498045602
iteration 19 bound=279.2687502140444 grad=0.8158266154891766, beta=0.8267001043222388
iteration 20 bound=279.2960000542748 grad=0.703768363172694, beta=0.8382566178996036
iteration 21 bound=279.320980886809 grad=0.5997265801752885, beta=0.8434146484475087
iteration 22 bound=279.3434606078785 grad=0.5043111475373108, beta=0.8441378177052045
iteration 23 bound=279.36325860067234 grad=0.4184542935076135, beta=0.8418919327376474
iteration 24 bound=279.38030997959106 grad=0.3428833902232986, beta=0.837741147507708
iteration 25 bound=279.3946815782497 grad=0.2778710838068246, beta=0.8324738259248873
iteration 26 bound=279.4065563534191 grad=0.2231730571434413, beta=0.8266963130878588
iteration 27 bound=279.4162003920951 grad=0.17808900868553854, beta=0.8208923682664909
iteration 28 bound=279.4239244165371 grad=0.14159176607218385, beta=0.8154570602538704
iteration 29 bound=279.43004853357945 grad=0.11247811676226765, beta=0.810712736322853
iteration 30 bound=279.43487530507997 grad=0.08950706791148676, beta=0.8069119749979095
iteration 31 bound=279.4386728124276 grad=0.07150553973185374, beta=0.8042311126727745
iteration 32 bound=279.44166688904187 grad=0.057434841783697295, beta=0.802758541531395
iteration 33 bound=279.44404033742563 grad=0.04642112657454439, beta=0.8024838453456035
iteration 34 bound=279.4459365929384 grad=0.03775838880540561, beta=0.8032952259897732
iteration 35 bound=279.44746560373466 grad=0.030894000396370372, beta=0.8049914276854999
iteration 36 bound=279.44871030204325 grad=0.02540557343044267, beta=0.807309573299074
iteration 37 bound=279.44973267388184 grad=0.020975555700949985, beta=0.8099637500408742
iteration 38 bound=279.450578944272 grad=0.01736746506224141, beta=0.8126845534692687
iteration 39 bound=279.45128373848564 grad=0.014405649769833847, beta=0.8152498950926259
iteration 40 bound=279.4518732745176 grad=0.01195910296319632, beta=0.8175016940517371
iteration 41 bound=279.4523677298273 grad=0.009929092267523622, beta=0.8193485518694437
iteration 42 bound=279.4527829484733 grad=0.008240023602917073, beta=0.8207582563966845
iteration 43 bound=279.4531316446551 grad=0.006832873781303312, beta=0.821745028496894
iteration 44 bound=279.453424235124 grad=0.005660572755891611, beta=0.8223555550334783
iteration 45 bound=279.4536694064914 grad=0.004684814368724446, beta=0.822656276670072
iteration 46 bound=279.45387449892564 grad=0.003873882045379132, beta=0.8227229893661412
iteration 47 bound=279.4540457667834 grad=0.0032011743488776505, beta=0.8226329052197913
iteration 48 bound=279.4541885596518 grad=0.002644198288645488, beta=0.822458879220779
iteration 49 bound=279.45430745383396 grad=0.0021838650785355185, beta=0.8222653901974921
iteration 50 bound=279.4544063540379 grad=0.0018039750491345198, beta=0.8221059125303695
iteration 51 bound=279.4544885775168 grad=0.0014908176247467255, beta=0.8220214197458667
iteration 52 bound=279.4545569276303 grad=0.0012328407169001957, beta=0.8220398569300946
iteration 53 bound=279.45461376035473 grad=0.0010203635396245317, beta=0.822176475171722
iteration 54 bound=279.45466104518636 grad=0.0008453195937307772, beta=0.8224349306564465
iteration 55 bound=279.45470042078523 grad=0.0007010241342940529, beta=0.8228090225405712
iteration 56 bound=279.4547332452602 grad=0.0005819643641393817, beta=0.8232848962313484
iteration 57 bound=279.4547606409314 grad=0.0004836121671640959, beta=0.8238434948123339
iteration 58 bound=279.45478353352104 grad=0.00040225940286954705, beta=0.8244630203123794
iteration 59 bound=279.454802685927 grad=0.00033487533763688546, beta=0.8251211789048576
iteration 60 bound=279.45481872689913 grad=0.0002789851480086806, beta=0.8257970292252134
iteration 61 bound=279.45483217507405 grad=0.00023256785537792115, beta=0.8264723206877227
iteration 62 bound=279.45484345890435 grad=0.0001939716555906585, beta=0.8271322839950891
iteration 63 bound=279.45485293303886 grad=0.00016184441534504787, beta=0.8277659043043654
iteration 64 bound=279.4548608916978 grad=0.00013507709447147125, beta=0.8283657587970774
iteration 65 bound=279.45486757954876 grad=0.00011275797318125855, beta=0.8289275303647555
iteration 66 bound=279.4548732005285 grad=9.413576747922489e-05, beta=0.8294493189002089
iteration 67 bound=279.4548779249981 grad=7.858996212742544e-05, beta=0.829930865537401
iteration 68 bound=279.4548818955523 grad=6.560694697716477e-05, beta=0.8303727884619599
iteration 69 bound=279.4548852317505 grad=5.4760787582548614e-05, beta=0.8307759067151792
iteration 70 bound=279.4548880339834 grad=4.5697681996483396e-05, beta=0.8311407044520798
iteration 71 bound=279.4548903866464 grad=3.812334643173852e-05, beta=0.8314669651133825
iteration 72 bound=279.45489236075645 grad=3.1792731691747396e-05, beta=0.8317535842490017
iteration 73 bound=279.4548940161176 grad=2.6501601541397442e-05, beta=0.8319985523633078
iteration 74 bound=279.45489540312343 grad=2.2079606811974488e-05, beta=0.8321990854029726
iteration 75 bound=279.45489656425764 grad=1.8384569072788027e-05, beta=0.8323518708476506
iteration 76 bound=279.4548975353487 grad=1.5297749281845285e-05, beta=0.832453391592021
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s03 00 -2.794549e+02 nan
01s07 05 -2.794715e+02 6.584704e-13
01s10 06 -2.794715e+02 6.584704e-13 /usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:60: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:34: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:77: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
Runtime: 01s10
Optimization status: Converged
output saved in /scratch/irc/personal/robrechtc/tmp//RtmpJCmWad/output:
dimred.csv
end_state_probabilities.csv
pseudotime.csv
timings.json
Input saved to /scratch/irc/personal/robrechtc/tmp//Rtmpkpzwea/input:
end_n.json
expression.csv
params.json
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 0000 5.331390e+04 nan
00s09 0001 5.331390e+04 4.906387e+08
00s10 0002 3.878768e+04 9.053697e+07
00s11 0003 3.297923e+04 2.896977e+07
00s13 0004 2.870901e+04 7.249534e+06
00s14 0005 2.643495e+04 1.975150e+06
00s15 0006 2.509596e+04 4.963718e+05
00s16 0007 2.436644e+04 1.207995e+05
01s19 0026 2.293123e+04 9.616095e+01
02s20 0051 2.287617e+04 1.415803e+01
03s21 0068 2.287295e+04 2.005746e+00
04s21 0087 2.286911e+04 1.404607e+01
05s22 0101 2.285072e+04 5.160258e+01
06s29 0114 2.283650e+04 1.669117e+01
07s31 0127 2.282600e+04 1.450493e+01
08s32 0140 2.281755e+04 8.691342e+00
09s36 0154 2.281546e+04 1.042318e+00
10s37 0173 2.281458e+04 1.227787e+00
11s37 0195 2.281277e+04 7.908932e-01
12s49 0212 2.281213e+04 1.043434e+00
13s50 0245 2.281159e+04 1.356792e-01
14s53 0273 2.281135e+04 9.123301e-02
15s55 0297 2.281099e+04 2.619196e+00
16s55 0316 2.281076e+04 2.244578e-01
17s56 0365 2.281036e+04 6.173227e-02
18s56 0399 2.281016e+04 8.998533e-01
19s58 0428 2.280999e+04 2.424983e-01
20s61 0447 2.280995e+04 6.030478e-01
21s61 0474 2.280987e+04 1.098654e-01
22s63 0506 2.280973e+04 1.304566e-01
23s65 0523 2.280964e+04 1.836951e-01
24s65 0543 2.280955e+04 1.470707e-01
25s65 0567 2.280939e+04 9.269882e-02
26s66 0593 2.280926e+04 1.509232e+00
27s67 0616 2.280909e+04 2.390859e-01
28s69 0639 2.280890e+04 9.500769e-01
29s70 0662 2.280879e+04 2.169588e-01
30s72 0682 2.280872e+04 1.009391e-01
31s75 0706 2.280865e+04 4.387940e-02
32s79 0732 2.280859e+04 3.544035e-02
33s84 0751 2.280856e+04 1.683326e-02
34s86 0769 2.280851e+04 2.135912e-01
35s87 0792 2.280844e+04 5.991442e-02
36s87 0814 2.280840e+04 4.383198e-02
37s94 0834 2.280838e+04 7.012321e-03
38s95 0852 2.280837e+04 5.026504e-03
39s96 0871 2.280836e+04 8.653844e-03
41s00 0893 2.280835e+04 2.676153e-02
42s01 0910 2.280834e+04 4.827438e-03
43s03 0930 2.280833e+04 9.305343e-03
44s06 0950 2.280832e+04 2.273234e-02
45s07 0971 2.280831e+04 2.745703e-03
45s76 0984 2.280831e+04 1.166282e-01
Runtime: 45s76
Optimization status: Converged
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s01 0000 4.555484e+02 nan
00s03 0001 4.555484e+02 1.985539e+02
00s08 0002 4.439428e+02 1.551677e+02
00s13 0003 3.801696e+02 2.107443e+02
00s15 0004 9.632758e+02 5.655311e+05
00s19 0005 3.758230e+02 1.865552e+02
01s21 0040 2.864642e+02 4.289821e+00
02s22 0062 2.864337e+02 2.135518e+01
03s25 0082 2.865016e+02 3.112628e+00
03s86 0095 2.864337e+02 2.135518e+01
Runtime: 03s86
Optimization status: Errorb'ABNORMAL_TERMINATION_IN_LNSRCH'
iteration 1 bound=-139.186515371328 grad=0.0, beta=0
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s01 00 1.391865e+02 nan
00s05 01 1.355463e+02 2.476064e+01
00s09 02 1.331335e+02 7.137182e+00
00s12 03 1.307353e+02 2.714307e+00
00s19 04 1.282483e+02 1.055315e+00
00s86 21 1.187747e+02 1.461327e-12
Runtime: 00s86
Optimization status: Converged
vb converged (gtol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 00 1.187747e+02 1.461327e-12
00s03 01 1.187747e+02 1.461327e-12
00s10 02 1.187747e+02 1.461327e-12 /usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:60: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:34: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:77: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
Runtime: 00s10
Optimization status: Converged
output saved in /scratch/irc/personal/robrechtc/tmp//Rtmpkpzwea/output:
dimred.csv
end_state_probabilities.csv
pseudotime.csv
timings.json
Input saved to /scratch/irc/personal/robrechtc/tmp//RtmpdQeIue/input:
end_n.json
expression.csv
params.json
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s02 0000 4.430223e+06 nan
00s17 0001 4.430223e+06 3.280466e+12
01s23 0007 2.532402e+06 4.603106e+08
02s39 0017 2.504656e+06 1.755013e+07
03s41 0023 2.503702e+06 1.401469e+05
04s44 0031 2.503224e+06 9.972431e+04
05s54 0041 2.504562e+06 4.442850e+07
06s74 0048 2.503003e+06 2.916761e+03
07s82 0056 2.502902e+06 3.708689e+04
08s92 0062 2.502840e+06 1.643192e+04
09s96 0069 2.502785e+06 2.956338e+03
11s19 0074 2.502769e+06 1.369846e+03
12s24 0079 2.502727e+06 1.138357e+03
13s29 0085 2.502711e+06 6.521896e+03
14s34 0091 2.502695e+06 5.057090e+03
15s34 0098 2.502689e+06 2.685064e+03
16s45 0104 2.502685e+06 4.044259e+03
17s50 0110 2.502681e+06 6.136344e+02
18s77 0116 2.502678e+06 7.579853e+02
19s82 0121 2.502676e+06 7.519092e+02
20s92 0126 2.502675e+06 2.115631e+02
22s07 0132 2.502673e+06 5.034223e+02
23s24 0137 2.502671e+06 6.565659e+02
24s29 0142 2.502673e+06 6.974545e+03
25s42 0148 2.502668e+06 5.016527e+02
26s62 0154 2.502666e+06 2.208635e+02
27s69 0162 2.502664e+06 1.621124e+02
28s85 0167 2.502663e+06 7.178579e+01
29s91 0172 2.502662e+06 1.689453e+02
31s12 0177 2.502660e+06 1.920438e+02
32s35 0182 2.502659e+06 9.134572e+01
33s49 0187 2.502658e+06 3.601001e+02
34s69 0192 2.502658e+06 8.662953e+01
35s82 0197 2.502657e+06 1.061099e+02
36s90 0203 2.502657e+06 3.321598e+01
38s02 0207 2.502657e+06 3.697488e+02
39s09 0212 2.502657e+06 1.049849e+02
40s17 0218 2.502656e+06 3.106047e+01
41s31 0223 2.502656e+06 6.072405e+01
42s32 0233 2.502656e+06 2.315330e+02
43s42 0239 2.502656e+06 6.561196e+03
44s46 0243 2.502655e+06 3.490632e+01
45s56 0247 2.502655e+06 2.302798e+01
46s67 0251 2.502655e+06 4.482681e+03
47s89 0255 2.502655e+06 3.274719e+01
48s90 0260 2.502655e+06 3.834764e+01
50s03 0265 2.502654e+06 2.746482e+01
51s09 0269 2.502654e+06 7.130438e+00
52s31 0274 2.502654e+06 1.427384e+01
53s60 0279 2.502654e+06 1.264609e+01
54s14 0281 2.502654e+06 2.588665e+01
Runtime: 54s14
Optimization status: Converged
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s03 0000 1.102816e+03 nan
00s05 0001 1.102799e+03 5.435252e+02
00s08 0002 1.088162e+03 3.253881e+02
00s11 0003 1.033738e+03 2.701041e+02
00s13 0004 4.319124e+04 4.862120e+09
00s17 0005 1.072906e+03 8.394544e+04
00s18 0006 9.967257e+02 4.764468e+03
01s20 0030 7.123332e+02 6.720377e+00
02s23 0057 7.110645e+02 7.847770e-01
03s25 0084 7.108610e+02 1.432088e+00
04s28 0110 7.108510e+02 4.656628e-04
05s29 0141 7.108493e+02 1.621294e-04
05s79 0156 7.108492e+02 2.692314e-04
Runtime: 05s79
Optimization status: Converged
iteration 1 bound=-489.80827626544465 grad=0.0, beta=0
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s02 00 4.898083e+02 nan
00s16 01 4.779806e+02 2.251496e+02
01s22 08 4.455957e+02 1.119313e-01
02s30 14 4.337851e+02 2.149382e-04
03s39 22 4.319988e+02 8.613027e-09
Runtime: 03s39
Optimization status: Maximum number of f evaluations reached
vb converged (gtol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s04 00 4.319988e+02 8.613027e-09
00s12 01 4.319987e+02 8.613027e-09
00s84 06 4.319943e+02 6.107004e-11 /usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:60: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:34: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:77: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/paramz/transformations.py:111: RuntimeWarning:overflow encountered in expm1
Runtime: 00s84
Optimization status: Converged
output saved in /scratch/irc/personal/robrechtc/tmp//RtmpdQeIue/output:
dimred.csv
end_state_probabilities.csv
pseudotime.csv
timings.json
Input saved to /scratch/irc/personal/robrechtc/tmp//Rtmp6KvkT0/input:
end_n.json
expression.csv
params.json
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s01 0000 3.508201e+06 nan
01s16 0005 2.581215e+06 1.820225e+09
02s29 0010 2.544486e+06 4.310459e+06
03s43 0015 2.538834e+06 1.519014e+06
04s45 0019 2.536536e+06 1.545954e+06
05s56 0024 2.534298e+06 1.709244e+06
06s68 0029 2.533438e+06 1.585001e+06
07s83 0034 2.532785e+06 3.894883e+05
08s99 0039 2.532481e+06 9.366113e+05
10s23 0044 2.532214e+06 4.344947e+04
11s31 0048 2.532107e+06 4.838731e+05
12s44 0053 2.531891e+06 2.640664e+05
13s47 0058 2.531632e+06 1.328457e+05
14s63 0063 2.531531e+06 3.439620e+05
15s88 0068 2.531414e+06 5.511269e+04
17s06 0072 2.531347e+06 7.013229e+04
18s11 0077 2.531261e+06 1.163778e+05
19s16 0081 2.531191e+06 2.093135e+05
20s18 0085 2.531123e+06 2.125168e+05
21s29 0090 2.530953e+06 9.382383e+04
22s41 0095 2.530820e+06 6.706391e+04
23s46 0100 2.530609e+06 7.146011e+04
24s53 0106 2.530433e+06 4.904249e+04
25s57 0110 2.530372e+06 5.671333e+04
26s75 0115 2.530252e+06 2.369258e+04
27s86 0119 2.530196e+06 6.353964e+04
29s01 0124 2.530135e+06 5.049898e+04
30s24 0129 2.530037e+06 2.083786e+04
31s48 0133 2.529975e+06 3.185430e+04
32s49 0136 2.529962e+06 8.375764e+05
33s52 0139 2.529935e+06 4.460151e+04
34s55 0142 2.529970e+06 8.476505e+05
35s57 0145 2.529885e+06 8.749468e+04
36s61 0148 2.529861e+06 3.359523e+04
37s63 0151 2.529829e+06 5.166397e+04
38s66 0154 2.529805e+06 2.478124e+04
39s68 0157 2.529783e+06 1.350025e+05
40s76 0160 2.529754e+06 3.011429e+04
41s91 0163 2.529736e+06 9.024548e+04
43s07 0166 2.529711e+06 1.514165e+04
44s16 0169 2.529681e+06 4.286428e+05
45s32 0172 2.529663e+06 5.679011e+04
46s34 0175 2.529799e+06 4.720420e+06
47s58 0179 2.529622e+06 4.321339e+04
48s58 0182 2.529607e+06 5.708533e+05
49s63 0185 2.529585e+06 3.230709e+05
50s89 0189 2.529542e+06 2.908666e+04
52s12 0193 2.529508e+06 1.077354e+04
53s23 0197 2.529472e+06 1.836140e+04
54s30 0201 2.529442e+06 1.932408e+04
55s55 0206 2.529426e+06 2.774167e+04
56s61 0209 2.529413e+06 4.861031e+04
57s96 0213 2.529386e+06 1.772571e+04
59s18 0216 2.529376e+06 3.899589e+04
01m00s29 0219 2.529358e+06 1.696821e+04
01m01s42 0222 2.529331e+06 1.234212e+05
01m02s45 0225 2.529306e+06 1.326772e+04
01m03s70 0228 2.529293e+06 1.570104e+05
01m04s72 0231 2.529271e+06 2.302334e+04
01m05s76 0235 2.529253e+06 1.743645e+04
01m06s83 0240 2.529232e+06 4.085321e+04
01m07s84 0244 2.529215e+06 1.298440e+04
01m09s07 0249 2.529195e+06 2.154889e+04
01m10s10 0253 2.529179e+06 1.965851e+05
01m11s25 0258 2.529163e+06 1.810781e+04
01m12s37 0263 2.529154e+06 7.254810e+04
01m13s52 0268 2.529147e+06 9.011649e+04
01m14s71 0273 2.529138e+06 1.042217e+04
01m15s89 0277 2.529135e+06 8.455476e+04
01m17s05 0282 2.529129e+06 4.702816e+03
01m18s08 0286 2.529126e+06 3.650059e+03
01m19s20 0290 2.529121e+06 4.920290e+03
01m20s33 0295 2.529115e+06 4.029666e+03
01m21s49 0300 2.529111e+06 6.332293e+03
01m22s57 0305 2.529107e+06 2.823169e+03
01m23s67 0309 2.529104e+06 1.298671e+05
01m24s84 0314 2.529098e+06 5.266894e+03
01m25s97 0319 2.529094e+06 4.234310e+03
01m27s09 0324 2.529091e+06 1.916977e+04
01m28s29 0329 2.529086e+06 3.254851e+03
01m29s46 0334 2.529081e+06 1.986457e+03
01m30s60 0339 2.529078e+06 2.316681e+03
01m31s76 0344 2.529076e+06 2.062713e+03
01m32s93 0349 2.529074e+06 2.452623e+03
01m34s05 0353 2.529073e+06 2.536362e+03
01m35s26 0357 2.529071e+06 1.170855e+03
01m36s35 0362 2.529069e+06 1.176680e+03
01m37s54 0367 2.529068e+06 1.602642e+03
01m38s57 0371 2.529066e+06 1.583745e+03
01m39s59 0375 2.529065e+06 1.168338e+03
01m40s64 0379 2.529068e+06 1.959002e+05
01m41s64 0383 2.529063e+06 1.479553e+03
01m42s70 0387 2.529062e+06 9.553558e+02
01m43s81 0391 2.529060e+06 1.459551e+03
01m44s98 0395 2.529059e+06 8.718056e+02
01m46s04 0400 2.529058e+06 5.562575e+02
01m47s17 0405 2.529057e+06 1.388022e+03
01m48s31 0410 2.529056e+06 2.454193e+04
01m49s48 0414 2.529055e+06 1.597923e+03
01m50s60 0419 2.529054e+06 3.230879e+03
01m51s74 0423 2.529052e+06 1.128491e+03
01m52s74 0427 2.529052e+06 1.133049e+03
01m54s03 0432 2.529050e+06 1.143033e+03
01m55s11 0436 2.529049e+06 2.384075e+03
01m56s23 0441 2.529048e+06 1.605517e+03
01m57s36 0446 2.529047e+06 7.086706e+02
01m58s43 0450 2.529046e+06 2.886478e+03
01m59s55 0454 2.529045e+06 9.550949e+02
02m00s68 0459 2.529043e+06 4.496177e+02
02m01s89 0464 2.529043e+06 7.367118e+02
02m03s15 0468 2.529042e+06 1.663861e+03
02m04s28 0472 2.529042e+06 3.912607e+02
02m05s33 0476 2.529041e+06 2.768005e+03
02m06s47 0481 2.529040e+06 1.188120e+03
02m07s59 0486 2.529041e+06 5.612352e+04
02m08s85 0491 2.529039e+06 1.792955e+03
02m09s89 0496 2.529038e+06 3.663109e+02
02m11s01 0501 2.529037e+06 1.020708e+03
02m12s07 0506 2.529036e+06 6.319129e+02
02m13s22 0511 2.529036e+06 9.961120e+03
02m14s36 0516 2.529035e+06 1.825298e+03
02m15s63 0521 2.529035e+06 1.165200e+03
02m16s85 0525 2.529034e+06 1.032657e+03
02m17s86 0530 2.529034e+06 1.553933e+03
02m19s04 0535 2.529033e+06 2.510165e+02
02m20s16 0540 2.529033e+06 3.388100e+02
02m21s31 0546 2.529032e+06 3.633872e+03
02m22s47 0551 2.529032e+06 1.057725e+03
02m23s71 0556 2.529031e+06 7.536029e+02
02m24s96 0561 2.529031e+06 8.882710e+02
02m26s22 0565 2.529031e+06 3.515888e+02
02m27s42 0569 2.529031e+06 1.552577e+02
02m28s49 0573 2.529031e+06 3.418286e+02
02m29s61 0578 2.529030e+06 2.418757e+02
02m30s84 0583 2.529030e+06 3.055072e+02
02m31s99 0588 2.529030e+06 9.229772e+02
02m33s26 0593 2.529030e+06 8.518901e+01
02m34s57 0598 2.529030e+06 4.949609e+01
02m35s70 0603 2.529030e+06 2.388078e+03
02m36s81 0607 2.529030e+06 5.820166e+01
02m38s01 0611 2.529030e+06 5.410223e+01
02m39s28 0615 2.529029e+06 6.444068e+01
02m40s09 0618 2.529029e+06 3.449820e+02
Runtime: 02m40s09
Optimization status: Converged
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 0000 1.630883e+03 nan
00s05 0001 1.630883e+03 2.085744e+04
00s11 0002 1.624699e+03 5.226748e+02
00s15 0003 1.620917e+03 7.275229e+02
01s19 0030 9.893327e+02 1.281410e+02
02s13 0054 9.369269e+02 3.087668e+01
Runtime: 02s13
Optimization status: Converged
iteration 1 bound=268.7249386187631 grad=571.6252057223991, beta=0
iteration 2 bound=279.8145056539123 grad=536.4634370888394, beta=1.000391100082989
iteration 3 bound=295.4893100332745 grad=486.5246932203983, beta=0.9837000645149222
iteration 4 bound=314.25074018154874 grad=440.013188058596, beta=0.957414148917409
iteration 5 bound=338.61176083060127 grad=379.81010980841285, beta=1.2727943229226235
iteration 6 bound=352.91335607595187 grad=224.81138310009962, beta=0.6198135828263034
iteration 7 bound=354.72909312477395 grad=194.44894962689233, beta=0.0
iteration 8 bound=356.43581676899197 grad=171.89900854685334, beta=0.0
iteration 9 bound=358.85023715505724 grad=167.98642655200325, beta=0.43895245549664924
iteration 10 bound=361.64622131404246 grad=166.24075842243417, beta=0.4741937798010799
iteration 11 bound=365.28039054993684 grad=164.50432077455622, beta=0.7176458368686506
iteration 12 bound=367.621026791095 grad=163.3912985260257, beta=0.19548120793174564
iteration 13 bound=373.85175931453057 grad=163.89660724616027, beta=1.9714735586815342
iteration 14 bound=389.81436826864314 grad=166.41346701393476, beta=2.3864210479692036
iteration 15 bound=431.9233707362705 grad=174.37436136734448, beta=3.9937579908649097
iteration 16 bound=434.6241778283265 grad=281.6641927161703, beta=0.0
iteration 17 bound=437.8525927376911 grad=232.55046271695335, beta=0.3945725729710317
iteration 18 bound=441.0958046692516 grad=220.22403772070498, beta=0.3544210651393375
iteration 19 bound=443.2252105208089 grad=214.05677376137893, beta=0.0
iteration 20 bound=447.4752017120236 grad=213.28002871765364, beta=1.0247185622413295
iteration 21 bound=453.86647147008216 grad=210.3619481943617, beta=1.0595970981735763
iteration 22 bound=462.9542789428137 grad=202.40942529902216, beta=1.2062603917323726
iteration 23 bound=465.32616736952343 grad=183.57285388909506, beta=0.06629235624865994
iteration 24 bound=469.04885809673533 grad=177.49008190122225, beta=0.874907999166529
iteration 25 bound=473.56884165572217 grad=166.8901905501276, beta=0.8327811891319511
iteration 26 bound=478.39417277694656 grad=152.29367849789693, beta=0.8125693770221215
iteration 27 bound=483.1215165963328 grad=134.70707676622783, beta=0.7966804821400302
iteration 28 bound=487.4525211406624 grad=115.63170491641297, beta=0.7792929565048065
iteration 29 bound=491.2110058655557 grad=96.83600889713409, beta=0.7595302804530607
iteration 30 bound=494.3492317028074 grad=79.89371581221079, beta=0.7410271707108919
iteration 31 bound=496.9222167909402 grad=65.67544066904324, beta=0.7294382992769668
iteration 32 bound=499.03414618761553 grad=54.21709496320312, beta=0.7277137795956935
iteration 33 bound=500.78783809487095 grad=45.058298322949156, beta=0.7330429671134294
iteration 34 bound=502.2614846564784 grad=37.672038134206126, beta=0.7395509547981645
iteration 35 bound=503.5106398054189 grad=31.663173849270763, beta=0.7443828906928385
iteration 36 bound=504.5773015469132 grad=26.75473442636038, beta=0.7484982638312818
iteration 37 bound=505.4946976987654 grad=22.731600835310967, beta=0.7527627895758088
iteration 38 bound=506.2888194780425 grad=19.421609295701394, beta=0.7565569640492172
iteration 39 bound=506.9803974620977 grad=16.691414634324705, beta=0.7599215118150612
iteration 40 bound=507.5871809907973 grad=14.432266848165831, beta=0.7646433810023281
iteration 41 bound=508.12452379814243 grad=12.546780360783353, beta=0.7719640784244086
iteration 42 bound=508.6045752898607 grad=10.950407419127853, beta=0.7807182190544099
iteration 43 bound=509.03611882688267 grad=9.57844020597268, beta=0.7891347282177814
iteration 44 bound=509.425531198475 grad=8.385230084246553, beta=0.7969659009955926
iteration 45 bound=509.77774248883355 grad=7.337331120039716, beta=0.8047964588260006
iteration 46 bound=510.0965356775424 grad=6.408695090122851, beta=0.8123928397525684
iteration 47 bound=510.38459052773806 grad=5.580016397446878, beta=0.8187347292806921
iteration 48 bound=510.64380549204327 grad=4.838582723070848, beta=0.8233663674698923
iteration 49 bound=510.8757780681349 grad=4.176178245060943, beta=0.8267487910968568
iteration 50 bound=511.0820749688064 grad=3.5865325338308356, beta=0.8293410390694382
iteration 51 bound=511.26428015795517 grad=3.064163490213435, beta=0.8311309948066634
iteration 52 bound=511.42402116443805 grad=2.604186020571675, beta=0.832087952496257
iteration 53 bound=511.5630311488751 grad=2.201969708515327, beta=0.8325605972820794
iteration 54 bound=511.6831562563032 grad=1.8526157560913916, beta=0.8329847535424619
iteration 55 bound=511.786269892678 grad=1.5508828315984637, beta=0.8333618141792118
iteration 56 bound=511.87417831955577 grad=1.2916232197462558, beta=0.8333365603360324
iteration 57 bound=511.94858965570586 grad=1.0701444963731868, beta=0.8327213830826907
iteration 58 bound=512.0111212395769 grad=0.882190242103028, beta=0.8316592973279359
iteration 59 bound=512.0632969874944 grad=0.7237820269830806, beta=0.8303338437087818
iteration 60 bound=512.10652932559 grad=0.5911823338009938, beta=0.8287378806813508
iteration 61 bound=512.1421071582419 grad=0.4809534150588509, beta=0.8268026858148757
iteration 62 bound=512.1711975878516 grad=0.3899729630407597, beta=0.8246465748794118
iteration 63 bound=512.1948485906566 grad=0.31539143537246295, beta=0.8225069211527187
iteration 64 bound=512.2139857627659 grad=0.25461689748856686, beta=0.8204780899634233
iteration 65 bound=512.2294106198656 grad=0.20534553056095448, beta=0.8184917436850975
iteration 66 bound=512.2418066069337 grad=0.16558085903090583, beta=0.8165376245868685
iteration 67 bound=512.2517503918887 grad=0.13361195548952742, beta=0.8148110813790033
iteration 68 bound=512.2597229138094 grad=0.10797513359129653, beta=0.8135578263580631
iteration 69 bound=512.2661187352697 grad=0.08743207654200362, beta=0.8127870347557922
iteration 70 bound=512.2712565372442 grad=0.07096178280036285, beta=0.812302742852129
iteration 71 bound=512.2753917450935 grad=0.057741939398667015, beta=0.8120051654012054
iteration 72 bound=512.2787288197536 grad=0.0471146423108556, beta=0.8119993207008109
iteration 73 bound=512.2814309924033 grad=0.03855173753244346, beta=0.8123868865594064
iteration 74 bound=512.2836275793703 grad=0.0316307577435287, beta=0.8130540976634626
iteration 75 bound=512.2854203317715 grad=0.026018083184570922, beta=0.8138270850128776
iteration 76 bound=512.2868893397703 grad=0.02145148077656971, beta=0.8147693808527942
iteration 77 bound=512.288097794647 grad=0.017722616303937032, beta=0.81604204867788
iteration 78 bound=512.2890954023094 grad=0.014665158801431134, beta=0.8175221607438055
iteration 79 bound=512.2899211385111 grad=0.012148312865039609, beta=0.8188352988123109
iteration 80 bound=512.290605840588 grad=0.010070837190579237, beta=0.8197928817594414
iteration 81 bound=512.2911744052788 grad=0.008353465229843378, beta=0.8205832158863465
iteration 82 bound=512.2916472013105 grad=0.006932228501572854, beta=0.8213767368599104
iteration 83 bound=512.2920408513725 grad=0.005754995555549993, beta=0.8219836116817416
iteration 84 bound=512.2923688793531 grad=0.004779835756615633, beta=0.8221903965649155
iteration 85 bound=512.2926423905099 grad=0.003972855470174962, beta=0.8222003470606345
iteration 86 bound=512.2928706145592 grad=0.003305674480409011, beta=0.8224362015719794
iteration 87 bound=512.2930612339302 grad=0.002753959309298639, beta=0.8230556032665974
iteration 88 bound=512.293220623189 grad=0.0022970870776684695, beta=0.8239719160468922
iteration 89 bound=512.2933540999434 grad=0.0019178552859938915, beta=0.8253348397206749
iteration 90 bound=512.2934661233422 grad=0.0016017988476994159, beta=0.8275300566884416
iteration 91 bound=512.2935603709623 grad=0.0013367181430928652, beta=0.8304872966427925
iteration 92 bound=512.2936397709099 grad=0.0011127521836629102, beta=0.8334020486812962
iteration 93 bound=512.2937065993076 grad=0.0009224817547431634, beta=0.8353711082311962
iteration 94 bound=512.2937626412443 grad=0.000760587602346492, beta=0.8359772303911915
iteration 95 bound=512.293809344203 grad=0.0006232302367040264, beta=0.8350964533275358
iteration 96 bound=512.2938479316136 grad=0.0005075319941806976, beta=0.832523013846476
iteration 97 bound=512.2938794941385 grad=0.00041121964206871275, beta=0.8282414826185808
iteration 98 bound=512.293905061256 grad=0.00033226478285851703, beta=0.8229625161616007
iteration 99 bound=512.2939256256778 grad=0.00026855068503389576, beta=0.8179253209045778
iteration 100 bound=512.2939421159333 grad=0.00021776961147439096, beta=0.8141017642078215
iteration 101 bound=512.2939553531903 grad=0.00017757543782709174, beta=0.811861294065993
iteration 102 bound=512.2939660277152 grad=0.00014579326379743755, beta=0.8113849344614898
iteration 103 bound=512.2939746989592 grad=0.00012053699359815746, beta=0.8129080354740227
iteration 104 bound=512.2939818057195 grad=0.00010025140084655285, beta=0.8161719976475111
iteration 105 bound=512.2939876804912 grad=8.373067108728752e-05, beta=0.8200720501381613
iteration 106 bound=512.2939925700335 grad=7.010140450406478e-05, beta=0.8234874511419812
iteration 107 bound=512.2939966588647 grad=5.875158015004373e-05, beta=0.8261752951491018
iteration 108 bound=512.2940000883359 grad=4.924042277076827e-05, beta=0.8284174396594534
iteration 109 bound=512.2940029688959 grad=4.1235745477729264e-05, beta=0.8302087297761254
iteration 110 bound=512.294005388638 grad=3.4483711406600684e-05, beta=0.8313034375760536
iteration 111 bound=512.2940074201697 grad=2.8787944072971888e-05, beta=0.8318478274985636
iteration 112 bound=512.2940091251148 grad=2.3987732006520993e-05, beta=0.8323538578581692
iteration 113 bound=512.2940105556099 grad=1.9944377191543106e-05, beta=0.8329673523386351
iteration 114 bound=512.2940117547083 grad=1.653968629212362e-05, beta=0.8333013163375536
iteration 115 bound=512.294012757544 grad=1.367665046497453e-05, beta=0.8331346614288773
iteration 116 bound=512.2940135929982 grad=1.1274811098167233e-05, beta=0.8327928958226132
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s06 00 -5.122940e+02 nan
01s27 02 -5.316896e+02 6.571643e+01
02s28 04 -5.399088e+02 5.192932e+00
03s49 06 -5.438022e+02 4.740362e-01
04s58 08 -5.457003e+02 4.244677e-02
05s94 11 -5.464511e+02 2.628707e-03
07s38 13 -5.467098e+02 2.494248e-03
08s62 15 -5.467886e+02 3.684370e-04
09s84 17 -5.467912e+02 1.596058e-07
11s09 19 -5.467912e+02 8.460922e-12
11s58 20 -5.467912e+02 8.460922e-12
Runtime: 11s58
Optimization status: Converged
iteration 117 bound=547.0666121499683 grad=29.031994135595074, beta=0.0
iteration 118 bound=547.3996689725867 grad=22.923512748059526, beta=0.6895380761350077
iteration 119 bound=547.5670783027883 grad=17.78184972732042, beta=0.0
iteration 120 bound=547.720420246284 grad=15.57290499971326, beta=0.0
iteration 121 bound=547.9506355743517 grad=14.554078556108376, beta=0.5994449436147182
iteration 122 bound=548.2666172463285 grad=13.398542491251158, beta=0.8532317895768289
iteration 123 bound=548.6299291169275 grad=11.775884551240887, beta=0.8503813952031234
iteration 124 bound=548.9876288882444 grad=10.193114737670019, beta=0.7748691339215443
iteration 125 bound=549.3497146027638 grad=8.780734264608672, beta=0.8485512704491176
iteration 126 bound=549.6771109127255 grad=7.477789994794489, beta=0.7761721508262974
iteration 127 bound=549.9870163207926 grad=6.424985457822049, beta=0.8361715214893245
iteration 128 bound=550.2690624387905 grad=5.429808807264637, beta=0.82254993471029
iteration 129 bound=550.5187134817534 grad=4.595965817082548, beta=0.8092272491171528
iteration 130 bound=550.744893311569 grad=3.8593724520664683, beta=0.8456485323869691
iteration 131 bound=550.9351942952076 grad=3.224319408323537, beta=0.7893363248741658
iteration 132 bound=551.1052350115398 grad=2.695148275690302, beta=0.85143119692591
iteration 133 bound=551.2466556061333 grad=2.223287062339293, beta=0.7953407944315779
iteration 134 bound=551.3695322549385 grad=1.8452255460958609, beta=0.8384822558505309
iteration 135 bound=551.471153774598 grad=1.5154040717621486, beta=0.8021093614686607
iteration 136 bound=551.5560882317436 grad=1.257468859172471, beta=0.8120234183672075
iteration 137 bound=551.6267667887387 grad=1.040597359746033, beta=0.8083222785508876
iteration 138 bound=551.6849430241914 grad=0.8715304484776775, beta=0.7932638308828469
iteration 139 bound=551.7348079464537 grad=0.7325515543456029, beta=0.827992544255688
iteration 140 bound=551.7760271711016 grad=0.6181250414954325, beta=0.7958792862080651
iteration 141 bound=551.8120297371154 grad=0.5223389697239309, beta=0.8447125604164982
iteration 142 bound=551.8418963215568 grad=0.44007083576796596, beta=0.7974416846063758
iteration 143 bound=551.8681207158025 grad=0.3724024363955882, beta=0.8482804004820966
iteration 144 bound=551.8899391335572 grad=0.31359000611339705, beta=0.8043201827899794
iteration 145 bound=551.9090270433553 grad=0.2654260932343987, beta=0.8505073008764658
iteration 146 bound=551.9251291183389 grad=0.222818749796065, beta=0.818982738764575
iteration 147 bound=551.939152743262 grad=0.1875577565071747, beta=0.8486010031674968
iteration 148 bound=551.9509999149154 grad=0.15638343669871801, beta=0.8282579572947256
iteration 149 bound=551.9610234228496 grad=0.13089808149116317, beta=0.8330144650231083
iteration 150 bound=551.9694541884976 grad=0.10928439776954378, beta=0.8268861442490189
iteration 151 bound=551.97650042093 grad=0.09206270125422322, beta=0.8154340877477434
iteration 152 bound=551.9825026126339 grad=0.07791764531413978, beta=0.8315483910459958
iteration 153 bound=551.9875014907878 grad=0.06649478159202957, beta=0.8114509813287824
iteration 154 bound=551.9918481675991 grad=0.05705943944420038, beta=0.8454139050892976
iteration 155 bound=551.9955371458957 grad=0.04911334198512701, beta=0.8160372911072007
iteration 156 bound=551.9988138280418 grad=0.04247691547772507, beta=0.8554355812777708
iteration 157 bound=552.0016072459871 grad=0.0367125524525129, beta=0.8232541463317362
iteration 158 bound=552.0040982181962 grad=0.03184755242235196, beta=0.8645082113352031
iteration 159 bound=552.0062699561666 grad=0.027466651152647945, beta=0.8409231480493086
iteration 160 bound=552.0082276927768 grad=0.023668864870942705, beta=0.8727497747738622
iteration 161 bound=552.0099395409195 grad=0.02016867146450758, beta=0.8567575279089092
iteration 162 bound=552.0114385578001 grad=0.01710358369019875, beta=0.8680219484085526
iteration 163 bound=552.0127363108121 grad=0.014326430223042613, beta=0.8598496457784378
iteration 164 bound=552.0138514220483 grad=0.011950498309391338, beta=0.8519505371551025
iteration 165 bound=552.0148040491579 grad=0.009899722080658107, beta=0.8557986854791683
iteration 166 bound=552.0155900633013 grad=0.00819087973264898, beta=0.8360373661946878
iteration 167 bound=552.0162497932293 grad=0.0067732077035911635, beta=0.8510615059919805
iteration 168 bound=552.0167918543881 grad=0.00561160893812829, beta=0.8215143078150569
iteration 169 bound=552.0172491743301 grad=0.004686808913208834, beta=0.8432982279038002
iteration 170 bound=552.0176167180726 grad=0.003942252432367099, beta=0.8095856536193997
iteration 171 bound=552.01792334015 grad=0.00336650215580784, beta=0.8377451756072042
iteration 172 bound=552.0181777841623 grad=0.002899727934527035, beta=0.8111024043515579
iteration 173 bound=552.0184005649808 grad=0.0025327565800039383, beta=0.8452291574948823
iteration 174 bound=552.0185903528298 grad=0.0022193820360045186, beta=0.8315747256602133
iteration 175 bound=552.0187553267681 grad=0.0019589423773027736, beta=0.8554824657335126
iteration 176 bound=552.0189006194616 grad=0.001726797106546355, beta=0.8510357583509153
iteration 177 bound=552.0190318353704 grad=0.0015267678500926315, beta=0.8575063130298015
iteration 178 bound=552.0191498435797 grad=0.0013462232423673923, beta=0.8668774496712397
iteration 179 bound=552.0192529826268 grad=0.0011861929728633506, beta=0.8609911291232221
iteration 180 bound=552.0193457191526 grad=0.0010407796831865674, beta=0.8818398514542727
iteration 181 bound=552.019429318364 grad=0.000908428641421385, beta=0.8644608562666983
iteration 182 bound=552.0195057321157 grad=0.0007889867743712473, beta=0.8850520578295759
iteration 183 bound=552.0195713727219 grad=0.0006809634384934518, beta=0.8580917056529515
iteration 184 bound=552.0196283508103 grad=0.0005874594422167504, beta=0.8747446326298712
iteration 185 bound=552.0196779169443 grad=0.0005054943699163132, beta=0.8506214172390271
iteration 186 bound=552.019722378669 grad=0.00043680352568995965, beta=0.8664924218294294
iteration 187 bound=552.019760531497 grad=0.0003771386464702532, beta=0.853724695506247
iteration 188 bound=552.0197929309027 grad=0.00032694666963356404, beta=0.8647161038872023
iteration 189 bound=552.0198211350423 grad=0.00028294894796948637, beta=0.8621804835840767
iteration 190 bound=552.0198464786628 grad=0.00024548726611087744, beta=0.8595947130026191
iteration 191 bound=552.0198688693367 grad=0.00021294538940411497, beta=0.865516081318228
iteration 192 bound=552.0198875534937 grad=0.0001851632435206948, beta=0.8540870774805599
iteration 193 bound=552.0199036908036 grad=0.0001611438567782838, beta=0.873403973774019
iteration 194 bound=552.019918195824 grad=0.0001400754397592749, beta=0.8597683107642565
iteration 195 bound=552.019931534438 grad=0.00012153871633727166, beta=0.8849678486112972
iteration 196 bound=552.0199428323606 grad=0.00010474932539391462, beta=0.8671051887635515
iteration 197 bound=552.0199523880804 grad=8.990992695666893e-05, beta=0.8846397386864862
iteration 198 bound=552.0199607851448 grad=7.653403976549815e-05, beta=0.8648380927367398
iteration 199 bound=552.0199684733105 grad=6.50209374348832e-05, beta=0.8738041868837211
iteration 200 bound=552.0199749801723 grad=5.490345329354384e-05, beta=0.862827309405595
iteration 201 bound=552.0199801546672 grad=4.632730286424107e-05, beta=0.8660685412930457
iteration 202 bound=552.0199844913319 grad=3.8868332937107755e-05, beta=0.8662384962777095
iteration 203 bound=552.0199884420047 grad=3.252444870619031e-05, beta=0.8599604259404985
iteration 204 bound=552.0199919011457 grad=2.70596276559744e-05, beta=0.8679244037067634
iteration 205 bound=552.0199945248892 grad=2.2419249664767792e-05, beta=0.8511357951716587
iteration 206 bound=552.0199965560465 grad=1.8520822760010504e-05, beta=0.8644418439522275
iteration 207 bound=552.0199983612172 grad=1.524010009243212e-05, beta=0.8433637134686093
iteration 208 bound=552.0200000103978 grad=1.252837570499509e-05, beta=0.8626156643198392
iteration 209 bound=552.0200012245309 grad=1.0232380869855089e-05, beta=0.8419894215616878
iteration 210 bound=552.0200020400075 grad=8.352132747597051e-06, beta=0.8581361323958413
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s14 00 -5.520200e+02 8.460922e-12
01s55 02 -5.520264e+02 1.270903e-03
02s66 04 -5.520463e+02 1.105489e-04
04s18 06 -5.520972e+02 1.280315e-03
05s42 08 -5.521019e+02 1.442380e-05
06s85 10 -5.521019e+02 1.231484e-08
07s71 12 -5.521019e+02 6.658362e-10 /usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:60: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:34: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:77: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
Runtime: 07s71
Optimization status: Converged
output saved in /scratch/irc/personal/robrechtc/tmp//Rtmp6KvkT0/output:
dimred.csv
end_state_probabilities.csv
pseudotime.csv
timings.json
Input saved to /scratch/irc/personal/robrechtc/tmp//RtmpdgRtp0/input:
end_n.json
expression.csv
params.json
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 0000 3.951508e+04 nan
00s03 0001 3.951508e+04 2.119116e+08
00s05 0002 3.059533e+04 3.500117e+07
00s08 0003 2.710702e+04 1.123052e+07
00s10 0004 2.454450e+04 2.679865e+06
00s13 0005 2.328392e+04 6.966043e+05
00s15 0006 2.258776e+04 1.657220e+05
00s19 0007 2.221835e+04 3.959858e+04
01s19 0044 2.118430e+04 3.077921e+01
02s19 0082 2.117344e+04 1.158084e+00
03s20 0120 2.116714e+04 5.380142e+00
04s22 0155 2.115385e+04 1.724243e+01
05s22 0191 2.114188e+04 1.740140e+01
06s23 0230 2.113585e+04 1.022498e+00
07s23 0270 2.113122e+04 1.049259e+00
08s26 0307 2.113035e+04 5.897027e-01
09s28 0345 2.112990e+04 7.638200e+00
10s29 0383 2.112926e+04 2.254004e-01
11s29 0421 2.112842e+04 3.840008e-01
12s31 0459 2.112789e+04 2.204164e-01
13s34 0498 2.112761e+04 3.799694e+00
14s36 0539 2.112740e+04 9.368907e-01
15s37 0576 2.112729e+04 3.765887e-02
16s39 0615 2.112721e+04 5.836764e-02
17s41 0656 2.112717e+04 3.385232e-02
18s42 0694 2.112713e+04 5.779168e-02
19s42 0731 2.112705e+04 3.613549e+00
20s43 0768 2.112697e+04 3.445190e-02
21s44 0809 2.112692e+04 2.482891e-02
22s45 0845 2.112689e+04 2.722244e-02
23s47 0881 2.112687e+04 9.209861e-02
24s49 0922 2.112686e+04 1.107547e-02
24s51 0923 2.112686e+04 1.107547e-02
Runtime: 24s51
Optimization status: Converged
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s00 0000 3.989280e+02 nan
00s02 0001 3.989280e+02 1.328629e+03
00s05 0002 3.780555e+02 2.989376e+02
00s07 0003 3.739747e+02 1.361374e+03
00s09 0004 3.667946e+02 2.013039e+02
00s12 0005 3.594426e+02 1.244836e+02
00s13 0006 3.171666e+02 3.654944e+02
00s16 0007 3.481780e+02 8.877399e+02
00s18 0008 3.062110e+02 4.592407e+02
00s64 0028 1.409986e+02 4.635473e+02
Runtime: 00s64
Optimization status: Converged
iteration 1 bound=229.96388717641773 grad=810.1629214078819, beta=0
iteration 2 bound=244.4238790507663 grad=660.9501572029988, beta=1.0032716607154408
iteration 3 bound=262.2750286333361 grad=481.65528781346325, beta=0.9742092713568072
iteration 4 bound=278.8960412941931 grad=327.04302261041585, beta=0.9009786706705322
iteration 5 bound=290.13596190717294 grad=210.72283083795284, beta=0.7881432318255281
iteration 6 bound=296.0873410259641 grad=139.3703767809267, beta=0.6783646359123763
iteration 7 bound=299.20434929483747 grad=103.53485192451744, beta=0.6105189366019771
iteration 8 bound=301.27060692201485 grad=85.44366663786874, beta=0.6245839422767976
iteration 9 bound=303.0450148327004 grad=73.4102120366929, beta=0.719561709588009
iteration 10 bound=304.7319548802167 grad=62.78316669636053, beta=0.7946692360215627
iteration 11 bound=306.3384807426488 grad=52.46200401612254, beta=0.8271992175169933
iteration 12 bound=307.8130722047797 grad=42.567870428176526, beta=0.8341897479389399
iteration 13 bound=309.0992400415006 grad=33.53374453452283, beta=0.8269967816935442
iteration 14 bound=310.1614296802048 grad=25.745579929774152, beta=0.8120559884551858
iteration 15 bound=310.9952431021547 grad=19.399956002721385, beta=0.7940802199307273
iteration 16 bound=311.6241147417344 grad=14.480288954258592, beta=0.777061566955507
iteration 17 bound=312.08710842221205 grad=10.807060244901969, beta=0.7640937001988183
iteration 18 bound=312.4256826376518 grad=8.122455985399524, beta=0.7569113247243623
iteration 19 bound=312.6751968578503 grad=6.168160033831245, beta=0.7556374115607817
iteration 20 bound=312.86208003251835 grad=4.730716500134398, beta=0.7589599519092245
iteration 21 bound=313.00458864289243 grad=3.6538507692701523, beta=0.7647625209127726
iteration 22 bound=313.1148608785488 grad=2.831270597526116, beta=0.7709371615837018
iteration 23 bound=313.200939465176 grad=2.1931933545766458, beta=0.775962826342282
iteration 24 bound=313.2683013070264 grad=1.6938490066908967, beta=0.7790653466342261
iteration 25 bound=313.32087074898595 grad=1.3022661608965422, beta=0.7800870119495078
iteration 26 bound=313.36163387622344 grad=0.9962649129525545, beta=0.77927413841909
iteration 27 bound=313.3929824945864 grad=0.7588733235488235, beta=0.7770997817822627
iteration 28 bound=313.4168908806358 grad=0.5763694501324163, beta=0.774142784180821
iteration 29 bound=313.43499962927467 grad=0.43731798264473676, beta=0.7710025958126383
iteration 30 bound=313.44865647684884 grad=0.3321466732806194, beta=0.7682266650923092
iteration 31 bound=313.45894408422 grad=0.2529585658081615, beta=0.7662407859886141
iteration 32 bound=313.4667092464384 grad=0.193400772498376, beta=0.7652894566298122
iteration 33 bound=313.4725972469924 grad=0.14850788144861757, beta=0.7654044660651403
iteration 34 bound=313.4770892028368 grad=0.11450406072211329, beta=0.7664184492440864
iteration 35 bound=313.4805384265832 grad=0.0885822115796544, beta=0.7680246434076792
iteration 36 bound=313.4832025147088 grad=0.06868741403415077, beta=0.7698636842695631
iteration 37 bound=313.48526947764026 grad=0.05332593967810628, beta=0.7716075724342993
iteration 38 bound=313.48687770428586 grad=0.041410298763040414, beta=0.7730168306904649
iteration 39 bound=313.4881304795723 grad=0.03214143448512454, beta=0.7739627888192518
iteration 40 bound=313.48910615854743 grad=0.024923529741134452, beta=0.7744210199653644
iteration 41 bound=313.48986512338433 grad=0.019304647025116594, beta=0.7744478500228894
iteration 42 bound=313.490454490343 grad=0.014936374376936875, beta=0.7741507888041325
iteration 43 bound=313.49091131481134 grad=0.01154667110336312, beta=0.7736599138077339
iteration 44 bound=313.4912648298532 grad=0.008921457464327829, beta=0.7731037874659624
iteration 45 bound=313.4915380759831 grad=0.006891784568904088, beta=0.7725914209321176
iteration 46 bound=313.49174914553896 grad=0.005324489481177811, beta=0.7722008241378824
iteration 47 bound=313.49191217207465 grad=0.004115041372145112, beta=0.7719741638823456
iteration 48 bound=313.4920381367049 grad=0.00318183320883827, beta=0.7719190291072129
iteration 49 bound=313.49213553043944 grad=0.0024615145345398453, beta=0.772014654569262
iteration 50 bound=313.49221089551645 grad=0.0019051494840027587, beta=0.7722213369609475
iteration 51 bound=313.4922692623488 grad=0.0014750735935424545, beta=0.7724909459683782
iteration 52 bound=313.4923144967978 grad=0.0011423567825667742, beta=0.7727765489272472
iteration 53 bound=313.4923495719649 grad=0.0008847885904949953, beta=0.7730396983699224
iteration 54 bound=313.4923767781256 grad=0.0006853033204017422, beta=0.7732546791466364
iteration 55 bound=313.49239788327384 grad=0.0005307655495627719, beta=0.7734097330368623
iteration 56 bound=313.4924142551601 grad=0.0004110428890444611, beta=0.7735058005503698
iteration 57 bound=313.49242695385465 grad=0.0003183022993187319, beta=0.7735535845494699
iteration 58 bound=313.49243680205194 grad=0.0002464771151046328, beta=0.7735697838888609
iteration 59 bound=313.49244443868577 grad=0.00019086270391780428, beta=0.7735732431646999
iteration 60 bound=313.4924503600466 grad=0.00014780836251496578, beta=0.7735815891413625
iteration 61 bound=313.49245495150944 grad=0.0001144811394328621, beta=0.773608725064393
iteration 62 bound=313.49245851214 grad=8.86836516983453e-05, beta=0.7736633589114249
iteration 63 bound=313.49246127386033 grad=6.871277951353173e-05, beta=0.7737485666096062
iteration 64 bound=313.49246341640264 grad=5.324963616381916e-05, beta=0.7738622486377016
iteration 65 bound=313.4924650789835 grad=4.127371555348929e-05, beta=0.7739982390819183
iteration 66 bound=313.4924663694108 grad=3.19958879734492e-05, beta=0.7741477778964635
iteration 67 bound=313.4924673711685 grad=2.4806168357250188e-05, beta=0.7743010604907581
iteration 68 bound=313.49246814892405 grad=1.9233086966636577e-05, beta=0.7744486258783256
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s01 00 -3.134925e+02 nan
00s05 01 -3.140698e+02 1.464970e+00
00s10 02 -3.140717e+02 3.404932e-03
00s18 03 -3.140719e+02 2.770115e-04
00s45 06 -3.140719e+02 5.986331e-12
Runtime: 00s45
Optimization status: Converged
iteration 69 bound=314.07189054324556 grad=2.4558161799350584e-05, beta=0.0
iteration 70 bound=314.07189099497646 grad=2.3228872937876134e-05, beta=0.9718041686972285
vb converged (ftol)
Running L-BFGS-B (Scipy implementation) Code:
runtime i f |g|
00s03 00 -3.140719e+02 5.986331e-12
00s18 01 -3.140719e+02 1.794606e-10
00s30 02 -3.140719e+02 1.794606e-10 /usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:60: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:34: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
/usr/local/lib/python3.6/site-packages/GPfates/GPfates.py:77: FutureWarning:Method .as_matrix will be removed in a future version. Use .values instead.
Runtime: 00s30
Optimization status: Converged
output saved in /scratch/irc/personal/robrechtc/tmp//RtmpdgRtp0/output:
dimred.csv
end_state_probabilities.csv
pseudotime.csv
timings.json